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Introduction to Medical Image Data Analysis

“Oddly, we are in a period where there has never been such a wealth of new statistical

problems and sources of data. The danger is that if we define the boundaries of our field in

terms of familiar tools and familiar problems, we will fail to grasp the new opportunities.”
- Leo Breiman -



— Medical Imaging —

Is the technique and process used to
create images of the human body for clinical purposes or ‘
medical science. ( )

« X-ray radiography
Q These imaging methods are essential for delineating the * Computerized tomography (CT)
« Magnetic resonance imaging (MRI)
Each modality employs a distinct targeting agent, < Ultrasound

generates data in varying dimensions, extracts unique * Positron emission tomography (PET)
features, and serves specific purposes within clinical and % Electroencephalography (EEG)
research contexts. < Magnetoencephalography (MEG)
» Functional near-infrared spectroscopy (fNIRS)
N Rna! » Mammography
P \\ | ‘ » Light microscopy images
N ?"\e ) > Fluoroscopy
| \o ) > Echocardiography
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— Cardiac Imaging
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— Image Processing Analysis Methods —

How to enhance and extract signals of interest in imaging data?
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Organ parcellation

Surgical planning
Image-guided interventions
Computer-aided diagnosis
Quantification of organ change

Structural Learning —
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Localization of pathology
Automated image segmentation
Multimodal fusion

Population analysis
Quantification of organ changes




— Light Microscopy Imaging at Single Cell  +—
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State-of-the-Art Al Applications in Medical Imaging and
Statistical Challenges

“If our goal as a field is to use data to solve problems, then we need to move away
from exclusive dependence on data models and adopt a more diverse set of tools.”
- Leo Breiman -



— Al Milestones —

Annotated Datasets Deep Learning
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— Al Milestones —

Reinforcement Learning Al Products
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— Al for Image Segmentation —

Segmentation Annotation

simpleclick Demo -o @

Liu, Q., Xu, Z., Bertasius, G., & Niethammer, M. (2023). SimpleClick:
Interactive Image Segmentation with Simple Vision Transformers.
ICCV., 22290-22300. 2023.
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R. Azad et al., “Medical Image Segmentation Review:

The success of U-Net.” arXiv, Nov. 27, 2022.

Minaee, Shervin, et al. "Image segmentation using

deep learning: A survey." IEEE PAMI 44.7 (2021): 3523-3542.



—iSuperfast Spherical Surface Registration +—

Subject surface Deformation field Moved subject surface Atlas surface

Zhao F, Wu Z, Wang F, Lin W, Xia S, Shen D, Wang L, Li G. S3Reg: Superfast Spherical Surface Registration Based on Deep Learning. IEEE Trans Med Imaging 2021; 40(8):
1964-1976.



— Cross-Modality Image Synthesis  +—
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— Computer-Aided Medical Data Analysis+—

Multimodality Image Feature Prediction
Processing Extraction/Selection Model
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— Major Challenges —

device, acquisition, noises)

00 Months 00 Months
00 Months

» Thereis no publicly available, high-quality imaging datasets with detailed

annotation information that cover a large spectrum of segmentation tasks in
health care.

» How to quantify the uncertainty and generalizarability of organ atlas as well
as deconvolution and structural learning models?

» How to develop DRL method for various segmentation and registration tasks?
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Opportunities for Statisticians in Advancing Medical
Data Analysis

“The best thing about being a statistician is that you get to play in everyone's backyard.”
- John Tukey -



— Application to ABC —
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Brain Imaging for Brain Disorders —

Capture the brain structure and function changes associated
with major brain-related disorders and normal development
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Alzheimer’s disease (AD) is
associated with brain shrinkage
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— Genetics of Brain Disorders —

Most major brain disorders (like AD) are heritable complex traits/diseases

Together 50%-70% of AD risk
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“Big Data” Imaging Cohorts
“Big data” Brain imaging datasets become available in recent few years
Systematically collect publicly available individual-level data for > 120k individuals

Build the largest database in this field l

BCP PING ABCD PNC HCP UK Biobank RADC
(Age [0,5]) (Age [3,21]) (n~ 10k, (Age [14,29])(Age [22,35]) (n ~ 100k [Ongoing],  (Age > 65)
Age [9,11]) Age [40,65])) ADNI
(Age [14,22])

g

UNC Biostatistics BIG-KP | https://bigkp.org/



— |IG: Reproducibility and Heritability —
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— Area-level Heritability Pattern of Functional Brain —

Fine details about the heritability pattern (> 64k fMRI connectivity traits among 360 regions)
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APOE-associations across functional networks —

observations: 1) Enriched in the secondary visual and default mode networks;
2) Stronger connections in fMRI than in structural MRI.
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Phenotypic Heart-Brain Connections

Heart imaging traits are widely associated with regional brain volumes, cortical
thickness, white matter microstructures, and fMRI traits.

270 AAo ® LA ® RA ; 4 cardiac chambers (the left ventricle
§q¢Dhoelv eRV (LV), right ventricle (RV), left atrium
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Publications (2018+)

Heart-brain connections: Phenotypic and genetic insights from magnetic resonance images. Science 380, abn6598 (2023). LINK. SCie Ce SCie ce

Genetic influences on the shape of brain ventricular and subcortical structures (2022). medRxiv, .
Common variants contribute to intrinsic human brain function networks (2022). Nature Genetics. nature genetlc
Genetic influences on the intrinsic and extrinsic functional organizations of the cerebral cortex (2021). medRxiv, 21261187. |
Common genetic variation influencing human white matter microstructure (2021). Science,

Transcriptome-wide association analysis of brain structures yields insights into pleiotropy with complex neuropsychiatric traits (2021). Nature Communications,

842872.1

Genome-wide association analysis of 19,629 individuals identifies variants influencing regional brain v y—architecture with

.
cognitive and mental health traits (2019). Nature Genetics, 51(11), 1637-1644. VK nature genetlcs

Large-scale GWAS reveals genetic architecture of brain white matter microstructure and genetic overlap viui coginuve ana mneitar neanun traits (n= 17,706) (2019).

Molecular Psychiatry, in press.

Heritability of regional brain volumes in large-scale neuroimaging and genetic studies (2018). Cerebral Cortex, 29(7),

We make our research results publicly available by building thefolloing. yesafices.

If you are interested in other summary-level data from our analyses or have any questions or comments, feel free to contact Bingxin Zhao (bingxin@purdue.edu)

or Hongtu Zhu (htzhu@email.unc.edu).

We build a GWAS browser using the PheWeb tool to explore GWAS results for massive functional, structural, and diffusion neuroimaging traits. Currently, we
g ’ ’ ging v,

support GWAS results of 2104 traits trained in the UKB British cohort (n~34,000), including

1. 6351 IGIVIA-DTI parameters of brain white matter (diffusion MRI)
2. 376 ANTS regional brain volumes (structural MRI)

3. 191 ICA-based functional MRI traits (rs-fMRI(ICA))

Genetics discovery in human brain by big data integration




— GWAS Summary Statistics —

The full set of GWAS summary statistics have been made freely

GWAS Summary Statistics for Brain Imaging
Phenotypes

Involved datasets: UK Biobank (UKB), Adolescent Brain Coghitive Development (ABCD) Study, Human Conheqgigne

I (]
Project (HCP), Philadelphia Neurodevelopmental Cohort (PNC), Alzheimer’s Disease’ Neuroimaging Initiative (AQNI),

Pediatric Imaging, Neurocognition, and Genftics{PING) 2 O 1 9)

Terms of Use:

e By downloading these data, you acknowledge that they will be used for research purposes and that you are in
compliance with applicable rules, policies and regulations.

e When reporting results of research that utilizes these data we request that you cite the original publication.

GWAS summary statistics for 200 resting-state functional
= o Contents [hide]
MRI (rs-fIMIRT) traits

) SWAS s z statistics 20C
e Sample size: Nn=34,691 1 GWAS summary statistics for 200

e Version: July 15, 2020 resting-state functional MRI (rs-fMRI)

x < traits
Download Summary Statistics:

2 GWAS summary statistics for 635
wget ——no—check—certificate ——content—disposition https://raw. tract-specific diffusion tensor imaging
githubusercontent.com/stat—-yyang/sumstats/master/fMRI. list (DTI) parameters
wget —i fMRI. list B o

3 GWAS Summary Statistics for 101

Brain Regional Volumes
Description: readme

4 GWAS summary statistics for 110
Citation: Zhao et al (2020) Common variants contribute to intrinsic

brain regional diffusion tensor imaging



—Brain- Heart Imaging Genetics Knowledge Portalt—

Brain Imaging Genetics Knowledge Portal (BIG-KP)

Genetics Discoveries in Human Brain by Big Data Integration

’\

Heart Imaing Genetics
Knowledge Portal

Brain Imaging Genetics Knowledge Portal Heart Imaging Genetics Knowledge Portal

(BIG-KP) (Heart-KP)

Aim to build the best knowledge database of neuroimaging genetics




— Important Statistical Topics —

“* Experimental Design
¢ Statistical Parametric Mapping

* Object Oriented Data (OOD) Analysis

“* Imputation Methods
*» Data Integration Methods

Zhu, H., Li, T., & Zhao, B. Statistical learning methods for
neuroimaging data analysis with applications. Annual
Review of Biomedical Data Science, Volume 6, Issue 1, 2023.

» Dimension Reduction Methods
» Image Genetics

» Causality Research

» Predictive Analysis

» Knowledge-based Methods

» Reinforcement Learning



- Other Important Topics —

Large Language Model

PR

Interpretability

Unbalanced Data

Generalizability ‘ ‘ Data Privacy




— Brain Imaging Genetics Paradigm —

Neuroimaging: an important component to help understand the
complex biological pathways of brain disorders
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—) Cardiovascular Disease & Brain Health +—

(Neuro)imaging: help understand the complex interplay between brain
and other human organs and their underlying genetlc overlaps
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Possible causal factors of brain structure | Many diseases (e.g., microvascular
changes, resulting in brain disorders like disease, high blood pressure) are
stroke, dementia and cognitive impairment | multisystem disorders




—— Causal Genetics Imaging Clinical Pathway —
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—1 Alzheimer’s Disease Neuroimaging Initiative +—

The overall goal of ADNI is to validate potentially useful biomarkers for AD clinical treatment trials. ADNI is
a multisite, prospective clinical study and actively supports the investigation and development of
treatments that may slow or stop the progression of AD

Researchers across 63 sites in the US and Canada have been tracking the progression of AD through
clinical, imaging, genetic and biospecimen biomarkers, starting from normal aging, early mild cognitive
|mpa|rment (EMCI), late mild cognltlve impairment (LMCI) to dementia or AD.

AD Progression -t

s TaU-mediated neuronalinjury and dysfunction
ws Brain structure

s Memory

' (linical function

- Alzheimer's Disease 'Neuroimaging Initiative

Welcome Returning Users

Pre-Symptomatic| eMCl | (MCl! Dementia

2004-now


https://adni.loni.usc.edu/study-design

—]

UK Biobank has collected and continues to collect
extensive environmental, lifestyle, and genetic data
on half a million participants.

UK Biobank is a large-scale biomedical database and research resource, containing in-depth genetic and health

information from half a million UK participants. The database is regularly augmented with additional data and is globally
accessible to approved researchers undertaking vital research into the most common and life-threatening diseases. It is
a major contributor to the advancement of modern medicine and treatment and has enabled several scientific

discoveries that improve human health.
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Brain, heart and full body MR imaging, plus full
body DEXA scan of the bones and joints and an ultrasound of
the carotid arteries. The goal is to image 100,000 participants,
and to invite participants back for a repeat scan some years
later.

Genotyping, whole exome sequencing & whole
genome sequencing for all participants.
Linkage to a wide range of electronic
health-related records, including death, cancer,
hospital admissions and primary care records.

Data on more than 30 key biochemistry
markers from all participants, taken from samples collected at
recruitment and the first repeat assessment.

Physical activity data over a 7-day period
collected via a wrist-worn activity monitor for 100,000
participants plus a seasonal follow-up on a subset.

Data on a range of exposures and
health outcomes that are difficult to assess via routine health
records, including diet, food preferences, work history, pain,
cognitive function, digestive health and mental health.

A full baseline assessment
is undertaken during the imaging assessment of 100,000
participants.
Blood & urine was collected from all participants,
and saliva for 100,000.


https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/imaging-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/health-related-outcomes-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/biomarker-data
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1008
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/questionnaire-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/baseline-assessment
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100078

—  Methodological Challenges —
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— Data Preprocessing and Data Modeling  +—

Data Preprocessing Data Modeling
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Jiang.et al. (2024). UKBFound: A Foundation Model for Multi-Disease Prediction and Individual Risk Assessment Based on UK Biobank Data



— Image Analysis Pipeline (—

(a) Non-vessel structure analysis (b) Non-vessel structure function

evaluation
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Prediction Models —

L ee——
|| | || | || | || | || | || L] I I I || || | | || | | || | | | |
r— Baseline Imaging Environment
Purpos_e Genetic Lifestyle Measurement I
Preprocess | ey determined | |
data input Baseline Imaging Environment
l Measurement Measurement

’ Genetic i e Measurement

LR o] [t
M O d e | n Shortest-path graph search
. _ @

Disease diagnosis
&
Risk assessment

Feature importance extraction Data-driven dimension reduction

(___________-\
Postanalysis | MMMNSEEIMNN |, | eee
C reomescdens

I S S S S B O e

\
l
I
!




PDFsdownload | ¢ z 1 Locate the table /
B _— _

Traning Data ~160k Abstracts

Alzheimer’s Disease SoERT L publ(ed
Entity Relation Corpus P Alzheimer s Disease

Human Annotation {if} Train & Predict Predicted Triplets
A

key \i/ords

Augmentation table detect

Alzheimer’s Disease Knowledge Graph

Construction & Applications Knowledge Graph Construction

Entity Linking

. i
up EUCgroup ¥ ; . s e "IPTgroup": 115,
h 42 table fror y, ai s content before *ElCgroup 119

3 i3 3 the demographics ]
: : t D) 29.7(5.9) outo extract and » uf
Matern ruitment,mean(SD) 29.7(5.9 } " .97
Graph Quefy L o 200(59 1 "IPTgroup”: 29.7,

2n(SD)ik 169(45) spond w “Thi "EUCgroup™: 30.0
g e | EA q e table details mu ups, kindly address ! "
. g0 2 ' 34) #1(399) . . "IPTgroup": "unknown",
Llnk PredICtlon S ! -~ . 0291 *EUCgroup": “unknown"

(30 i e pa ;

. ', W 1 X ";.;.C)IIEBI ; :“ : 33) "8 erage age ol the : 1’ /\\ "Asian": { t:

D p \ [ ity 65)24(202 ) U AnRe e pan & “IPTgroup':,

AD Prediction Al ol  aclor i istbution o he prican g4

@RUGBANK '

Applications

MeSH ClinVar

Yang et al., Alzheimer’s Disease Knowledge Graph Enhances Knowledge Discovery and Disease Prediction.
Gao et al., Empowering Mental Health Insights: The Synergy of Knowledge Graphs and Large Language Models




— Foundation Models for GMAI and Pan Biobank |—

Perspective

Multimodal self-supervised training Medical domain knowledge Flexible interactions

= | Publications

r{H

A N Q&A exchanges ¢ @

Clinical Knowledge Multimodal inputs
notes graphs and outputs

—> «> TN —

Reasoning with multiple Dynamic task specification
knowledge sources

e (@) (&) (P O 3 =

Chatbots for Interactive Augmented Grounded Text-to-protein Bedside decision
patients note-taking procedures radiology reports generation support

Regulations: Application approval; validation; audits; community-based challenges; analyses of biases, fairness and diversity

Fig.1|Overview ofaGMAImodel pipeline.a, AGMAImodelis trained on outtasks that the user can specify in real time. For this, the GMAImodel can
multiple medical datamodalities, through techniques such as self-supervised retrieve contextualinformation fromsources such as knowledge graphs or
learning. Toenable flexible interactions, datamodalities suchasimagesordata  databases, leveraging formal medical knowledge to reasonabout previously
fromEHRs can be paired with language, eitherinthe formof textor speechdata.  unseentasks. b, The GMAImodel builds the foundation for numerous

Next, the GMAImodelneedsto access various sources of medical knowledgeto  applicationsacross clinical disciplines, eachrequiring careful validationand
carry out medical reasoning tasks, unlocking a wealth of capabilities that can regulatory assessment.

beusedindownstreamapplications. The resulting GMAImodel then carries

Moor, M., ... ., Rajpurkar, P. (2023) Foundation models for generalist Pan-biobank studies
medical artificial intelligence. Nature.



& Part IV

Statistical Causal Models

“Causation is not merely a useful concept, it is fundamental to our understanding of the world. Without causal
inference, we are merely describing patterns, not explaining them.”
-Judea Pearl-



PFLM

e Consider a high-dimensional Partially Functional Linear Model (PFLM)

Y,:=C¥+Xi-r,8+fzi(t)f(t)dt+6i, i=1,..,n
T

UNC Biostatistics BIG-KP | https://bigkp.org/



— Estimation Algorithm —

* Modify the support detection and root finding algorithm in Huang et al. (2018)

[
' Ste P- 1: P rofile out the functional pa rt by usi ng : Algorithm 1 Functional support detection and root finding (FSDAR)
[

| th e Re p rese nte r Th eorem Input: An initial ﬁo and the sparsity level J; set k = 0.
_____________________________________ : 1: select A by minimizing the GCV criterion GCV()J\ =n|P)(Y - X,.IS'D)H% /[tr(P)]? and calculate d¥ =
v XIPyo(Y - X8%) /n;
2: fork=0,1,2,...
L AR = (8 ) 18+ o), 1 = (4R)

2
3

4 Ak — = argminy {nHP“)‘\(Y — XA**’F} ||2/[tr(P )]“} ; Py = -n.)\k(Z i -n.)\k'l)_l;
3 [XIiP\AX:lJ)_ Xr,;iP\&Y D"H-l“o
6

7

8

. Step -2: simultaneously identify the important |
 features and obtain scalar estimates : = X7 Py (Y — X4a3"+1)f

41‘ then
20 \T

v ; Stop and denote J = [j,{lmjp) .
9: else

v 10: k=k+1;

v 11: end if

—————————————————————————————————————— [ 12: end for

I . . = . -~ -~ n ~ T =
' Step-3: plug the scalar estimates into the loss Output: B, €= (S+n\ D)7 (Y —XB), and €=, (K2).
' function to derive the functional estimate

Huang, J., Jiao, Y., Liu, Y., & Lu, X. (2018). A constructive approach to £, penalized regression. The Journal of Machine Learning Research, 19(1), 403-439.



— Theoretical Properties —

Theorem 1: Under suitable conditions, as n = oo, the following inequalities hold with probability
approaching one,

18" atsalls S VB Nz + nh(), 1841 = Bllz < CY**2{1B*]I2 + BRO),

where * is the true value of the scalar coefficients, A* is the true index set of nonze

XrPy(Z,6* xTp
C,b are constantsand h(J) = max (II aPA(Z57) | |1Xa AEHZ)
ACS:|A|=] n n ,

. ||,[>’*|A*\Ak+1 ||, : estimation error of false zero elements, ||5** — B*||, : estimation error of the scalar estimators

Theorem 2: Under suitable conditions, if K~1/2&* € Ran(T") with r € [0,1/2] and if the eigenvalues
of the operator T = K'/2E{Z(t)Z(s)}K'/? satisfy s; = j~2%, by choosing 1 =< n=2¢/(2a+1+4ar) \ye
can have

4 2 2at+4ar
E*<f = 5*}2*) —70) (Tl 2a+1+4ar +]2 log(p) n_l) p

R 4ar
1§ =&"ll7 =0 (n 2a+1+4ar + [ log(p) n‘l)-



— Model Setup

Outcome generating model
Y; = Yo xuBit < Zy,B > +¢

Exposure generating model
S

Zi=ZXiI*C1+Ei

1=1
B is the main parameter of interest, representing the association between the 2D imaging exposure
Z; and the behavioral outcome Y; , 3; represents the association between the |-th observed
covariate x;;and the behavioral outcome Y;, and €; and E;are random errors that may be correlated.

The symbol “+” denotes element-wise multiplication.



. True Confounders, Precision, _
Instrumental and Irrelevant Variables

Outcome generating model

. Yi = Y1 xuBi+ < ZyB > +¢g
Exposure generating model
S

Zi :inl*cl-l_Ei
=1

True Confounders C={leAI|P; #0andC; # 0},
Precision Variables P={leA|B #0andC(C, =0},
Instrumental Variables J={leA|pB, =0andC, # 0},
Irrelevant Variables S={leAlp =0andC, =0}

Aim (to correctly estimate B): retain all covariates from M; = CUP = {l € A | B, # 0}, while
excluding covariates fromIuS ={l € A | §; = 0}.



— Marginal Screening —

Fit:
Yi =xuB1 + €
Obtain:
ﬁlM =n"! ?:1 Xi1Y;

Problem!!! (plugging exposure model into outcome model)

Outcome generating model Y; = ;-1 x; B+ < Z;,B > +¢;

Exposure generating model Z;= );}_; x; * C; + E;

Obtain:
Y; = Y1 %y (B +< C,B >)+ < E;,B > +¢

Miss a portion of confounders when 3; and < €;, B > are of similar magnitude but opposite sign.



— Joint Screening (proposed) —

Marginal screening:
Z; = Yi-1 X1 * C; + Ej

Obtain (Kong, An, Zhang and Zhu, 2020):

M __ -1 n X
C/" =n"" Xij—1 Xy *Z; € RP™

C={leA|pB #0and C; # 0},
i ={1<1<s: || 2 1) ?={leﬂ|ﬁiioz:dcll=0}, %

_ i J={l€AlB =0andC, # 0},
— . M l l
My ={1<1<s:0 T N, = Von) S={leAlp =0andC =0}

Select submodel: M = M U M,. (Union)

Alternative choices (both worse): M; (outcome) or My N M, (Outcome).



— Estimation (proposed) —

Minimize:
1 2
~Yy (Y —(Zy,B) = Sy Xubr) + Lin Sie 1B+ A2n 1 BIL

where || B [l.= X ox(B) .
k Ok(B) C={leAl|pB #0andC, =0}

L1 penalty, exclude instrumental and irrelevant variables. P={€A|Ip #0andC =0}
Jole Al B =0andC; + 0},
Nuclear penalty, low-rank estimation of B. S =leA|B =0and(; =0}

Estimated effect size of imaging exposure z,

A(z) = (z,B)



- Theoretical Properties —_

1
Theorem 3: Under suitable conditions, let y; , = aDin™",y,,, = aD;(pq)2n™" with 0 < «
then P(M; € M) > 1 and P(|M| = 0(n?**7)) > 1asn - oo.

* With properly chosen y; , and y;, ;,, the joint screening set includes the confounders and precision variables with
high probability
* The size of selected model from the screening is only a polynomial order of n.

A n T\ T
Theorem 4: Let 8; = (,BT,vec( B) ) , under suitable conditions, asn — oo,

116, — 6*|| = 0,(max{n

* The convergence rate is controlled by k and
* Kk controls the exponential rate of model complexity that can diverge
* 1 controls the rate of largest eigenvalue of population covariance matrix that can grow

MORE THAN JOURNEY | didiglobal.com



— DAG and Mandelian Randomization —

X: Genetic and X: Precision
Clinical Confounders Variables

1/ N\

(ZlmsgngBgoswe,  Y:Bahavora Otaome

U: Unmeasured
Confounders

Our DAG is closely related with the causal path
diagram of multiple instrumental variables in the
Mandelian Randomization (MR) literature.

Imaging measures can be regarded as an exposure
function.

If there are no unmeasured confounders, then we ca
make the causal inference on the effect of Zon Y.



&
UKB 500,000 HCP Lifespan 4,000+

ABCD 10,000+ ADNI 2,000+ ---

Unobserved Unobserved
confounder confounder

Environment ‘ h .

Cognltnon Behavior isease

Lifestyle -

T i"/’ Gz Y
SES Observed
© B2 An confounder

Observed / \
confounder s

R iM% W

linical Unobserved \ /
e confounder Unobserved
Disease Coagnition confounder

Figure 1

(@) Major data types from different domains in several representative large-scale biomedical studies. The number after each dataset
represents the sample size. () A dynamic causal model for delineating the CGIC pathway confounded with environmental factors and
unobserved confounders. An arrow from a factor X to a factor Y represents the direct effect of X on Y. Abbreviations: ABCD,
Adolescent Brain Cognitive Development; ADNI, Alzheimer’s Disease Neuroimaging Initiative; CGIC, causal genetic-imaging-
clinical; HCP, Human Connectome Project; SES, socioeconomic status; UKB, UK Biobank.




* Challenges

O DiDi

— Exclude the Effect of the Unobserved Confounders —

Consider the high-dimensional functional structure equation Models with endogeneity

Pn
Y, = a+ EX”’ B, + jzi (OB@D)dt + €, (1)
T

£=1

[%0
Z;i(t) = in{)Cf(t) + E;(t),
=

(2)

v The error process E;(t) is allowed to be correlated with the error term ¢;.

v" The common unobserved confounders cause the correlation.

v

NAOXKX

Four types of genes: (= {£ € A|B,; = 0, C,p(t) # 0},
J={fEA|B, =

Infinite dimensional endogenous variable with scalar instruments
A mixed set of instruments and control variables - P
Some invalid instruments such that §; # 0 =

High-dimensional covariates
MORE THAN JOURNEY .com

7’




—— ldentification Problem —

e Consider one valid instrumental variable

Yi =a+ _[Zl (t)B(t)dt + €, Zi(t) = Xi{)Cg(t) + Ei(t)
T
* Plugging Z;(t) into Y;
* Using the fact v' Existing works use functional instruments

5 [Xl- (Yl- - j Z, (t)B(t)dt)] =0, E|x(z@®-x7c®)|=0
T
Identify unique leading coefficients {b, }x_; (p equations with p + K parameters)
E(XXD)EQGY) == g + [LE(XXT)E(X,.Z;(®)B@)dt = B + [, C(OB()dt ~ f + LK., becy

Corollary: Suppose that f C(t)B(t)dt can be approximated by YX_, b, c; with ¢, belng a vector, and for

any K of the relevant instruments identifies a unique {bk}K 1. If the number of i
lessthan (p — K + 1) /2, there is a unique solution

v If K = 1, it reduces to the majority rule.
O DiDi MORE THAN JOURNEY | didiglobal.com



—

Simulation Studies of FLSEM

(——

Table 1: Monte Carlo averages with standard errors in parentheses for n = 400, p = 20 for two-dimensional functional exposure

FLSEM

PFLM
FLSEM

PFLM
FLSEM

PFLM
FLSEM

PFLM

0.5 0 FLSEM
Plugged-In
PFLM
0.2 FLSEM
PFLM

0.5 FLSEM
PFLM

0.7 FLSEM
PFLM

0.000(0.000) 7.220(2.1

0.000(0.000) 6.400(2.35

0.000(0.000) 7.180(2.0

FZ, FN, FZy
0.000(0.000) 7.120(1.996) 0.000(0.000) 0.080(0.2
- - 0.000(0.000) 2.300(1.2
0.000(0.000) 6.960(2.194) 0.000(0.000) 0.040
- - 0.000(0.000) 3.380
0.000(0.000) 7.380(2.108) 0.000(0.000) 0.120
- - 0.000(0.000) 3.960
0.000(0.000) 7.260(2.068) 0.000(0.000) 0.020(0.
- - 0.000(0.000) 4.000(0
0.000(0.000) 6.280(2
- - 0.000(0.000
- - 0.000(0.000

0.1
0.8
0.3
0.1

.360(1.:
2.600(1.3
22) 0.000(0.000) 0.060(0.3
- - 0.000(0.000) 3.560(0.7
56) 0.000(0.000) 0.080(0.2
- - (0.000(0.000) 3.960(0.1
77) 0.000(0.000) 0.080

- - 0.000(0.000) 4.000((

(0.000) ((
(0.000) (
(0.000) ((
(0.000) (
(0.000) (
(0.000) 3.960(
(0.000) (
(0.000) (0
.176) 0.000(0.000) 0.080(0.2
(0.000) 1.360(
(0.000) (
(0.000) ((
(0.000) (
(0.000) (
(0.000) 3.960(
(0.000) (0.2
(0.000) (0

FNy

.000

MSEg
0.049(0.014
0.053(0.021
0.051(0.016

74)
) 0.053(

98) (
J)UZ 5(0.074
7(

(

16 0.063(

0.033

0.579(C

385) 0.047(0.015) 0.037
0.644(0.123

1) 0.048(0.013) 0.034(C

0) 0.945(0.015) 7.226

) 0

)

)

)

)

)3

4 )
0 )7

274) 0.046(0.012) 0.032

)

8)

)

)

0) 0

39) 3

)

4) 7

1
.0
241) 0.065(0.101) 0.180(C
0.084(C
0.034(C
33) 0.206(0.097) 0.5
74) 0.
274) 0.047

(0.014) 0.037

98) 0
)
)
)
)
55) (
314) 0.047(0.013
) 0
)
98) 0
)
0) 0 217

p1: control the correlation within the scalar variables

p,: cohtrabthe correlation between error terms

<« < < X

Estimate the function-on-scalar model (2) under RKHS with L, penalty

Obtain the fitted value of Z;(t), Z;(t) is not correlated to €;
Estimate the linear model with L, penalty after projection of Z;(t)

Plug Z;(t) into Model (1) and estimate the PFLM using the selected

FZ: number of false zero scalar predictors

FN: number of false nonzero scalar predictors
MSEg: scalar mean squared error

FLSEM: functional linear structure equation model

PFLM: the partial functional linear model that ignores endogeneity



— Statistics Up Al Alliance —

https://statsupai.org

< Stats Up Al
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