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“If our goal as a field is to use data to solve problems, then we need to move away
from exclusive dependence on data models and adopt a more diverse set of tools.”
- Leo Breiman -
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Statistics is the discipline that concerns the collection, organization, analysis,
Interpretation, and presentation of data.

Leo Breiman (2001). Statistical Modeling: The Two Cultures. Statistical Science.

“There are two cultures in the use of statistical modeling to reach
conclusions from data. One assumes that the data are generated by a
given stochastic data model. The other uses algorithmic models and treats
the data mechanism as unknown. The statistical community has been
committed to the almost exclusive use of . This commitment
has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current
problems. , both in theory and practice, has
developed rapidly in fields outside statistics. It can be used both on large
complex data sets and as a more accurate and informative alternative to
data modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.”
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Algorithmic modeling =& ;&€
Deep Learning
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Two Opportunities for Statisticians

“Oddly, we are in a period where there has never been such a wealth of new statistical

problems and sources of data. The danger is that if we define the boundaries of our field in

terms of familiar tools and familiar problems, we will fail to grasp the new opportunities.”
- Leo Breiman -



— Deep Applications and Deep Math/Stat
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— Deep Applications —
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——Ride-sharing Platform is a Complex Ecosystem—-
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Leverage Supply-Demand Network Effect

How to evaluate and improve the operational efficiency of ride-sharing platform?

Supply-Demand Forecasting_| I_Supply-Demand Diagnosis

Experiment Desig Deep RL Learning

Lifetime Value Lifetime Value

Policy Assessment Q e p Policy Optimization

UNC Biostatistics UNC Biostatistics



—  Supply-Demand Forecasting —
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Predicting the demand-supply distribution A Improve the service quality
¢ ¢
Model <> Drivers o=
*  Multi-modal data fusion * Reduce empty driving

* Complex spatio-temporal patterns

O o [J

Transfer ELA & Riders A
i, : : 14
* Heterogeneous space among cities * Intelligent travel guidance
* Heterogeneous feature among tasks * Less queueing time
Recognition |~ | Platform a8
_i= el

* Causal inference e Fill demand-supply gap
* Model interpretation * Recognize the market

* Impact analysis * Better dispatching and scheduling
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Home > About INFORMS > News Room > Press Releases >

I n fo r ms Solutions to Increase Efficiency in the Ride-Hailing Marketplace: Researchers Recognized with

INFORMS Daniel H. Wagner Prize

ﬂ N THIS SECTION

Solutions to Increase Efficiency in the Ride-Hailing
Marketplace: Researchers Recognized with INFORMS Daniel
H. Wagner Prize

we f in ¥

CATONSVILLE, MD, November 7, 2019 -

the leadin ciation for operations research (O.R.)

MEDIA CONTACT and analytics professionals, has awarded the 2019

Daniel H. Wagner Prize for Excellence in the Practice
of Advanced Analytics and Operations Research to
researchers from DiDi Research America and Didi
Chuxing Technology Co. for their work to incre
efficiency in the ride-hailing marketplace. The award
was presented October 21 at the 2019 INFORMS

Annual Meeting in Seattle.

Synthesis Lectures on Synthesis Lectures on @ SYNTHESIS
Learning, Networks, and Algorithms

Learning, Networks, and Algorithms COLLECTION OF TECHNOLOGY

Series Editor; Lei Ying

Ihiwei (Tony) Qin - Xiaocheng Tang - Qingyang Li- Hongtu Zhu - Jieping Ye
Reinforcement Learning in the Ridesharing Marketplace

This book provides a comprehensive overview of reinforcement learning for
ridesharing applications. The authors first lay out the fundamentals of the rid
system architectures and review the basics of reinforcement learning, including)
major applicable algorithms. The book d
the various aspects of a ridesharing system and discusses the existing rei
learning approaches for solving them. The authors survey the exist
g 7 2

di il
7 studies, The

of two of methods closely related to reinforcement learning: WMM
programming and model-predictive control.

Reinforcement
Learning in the
Ridesharing
Marketplace

In addition, this book:

+ Explains the benefits of taking a reinforcement learning approachto
ridesharing optimization problems

« Analyzes a number of specific works that cover the optimization of ridesharing
platforms using reinforcement learning

+ Highlights the major challenges and ities that ial for advancing
reinforcement learning for ridesharing

About the Authors.

Zhiwei (Tony) Qin, Ph.D., is a Principal Scientist at Lyft Rideshie Labis.

Xiaocheng Tang, Ph.D., is an Al Research Scientist at Meta.

QingyangLi, Ph.D.. is a Senior Engineering Manager at DiDi Autonomous Driving.
Jieping Ye, Ph.D. is iin Alibaba Group.

Hongtu Zhu, Ph.D. is a Professor in the Department of Biostatics at The University
of North Carolina at Chapel Hill.
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Brain Imaging Genetics Paradigm
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Neuroimaging: an important component to help understand the
complex biological pathways of brain disorders

> molecules, brain cells, structure/function Brain
Genes | \ .
P e e reedback disorders
e N\ D r \ ' r N
_Genes Expression Molecules Cells _Brain Symptoms
RNA genes, —) , — neuron — Structure, —)- _
protein-coding iy preisl: development, circuits, Behavioral
g genes ) metabolites L organelle y tests

physiology
Genomics (N
Epigenomics

Transcriptomics Cell bioiogy
Proteomics Neuroscience
Metabolomics /
Interactomics

I Changes in #ieuwral interactions,

2 altered braijéicture/function

ncover the profile of brain
normalities in each clinical outcome
to study how disorders develop

Environmental, social and psychological factors




— Multi-organ Health —

(Neuro)imaging: help understand the complex interplay between brain
and other human organs and their underlylng genetlc overlaps
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Possible causal factors of brain structure
changes, resulting in brain disorders like
stroke, dementia and cognitive impairment
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|« Chronic Kidney “,’ 7| Dysfunction

Disease \] Al ° Coronary
e Ischemic Al Microvascular
nephropathy i Disease

Many diseases (e.g., microvascular
disease, high blood pressure) are
multisystem disorders
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UK Biobank has collected and continues to collect
extensive environmental, lifestyle, and genetic data
on half a million participants.

UK Biobank is a large-scale biomedical database and research resource, containing in-depth genetic and health

information from half a million UK participants. The database is regularly augmented with additional data and is globally
accessible to approved researchers undertaking vital research into the most common and life-threatening diseases. It is
a major contributor to the advancement of modern medicine and treatment and has enabled several scientific

discoveries that improve human health.
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Brain, heart and full body MR imaging, plus full
body DEXA scan of the bones and joints and an ultrasound of
the carotid arteries. The goal is to image 100,000 participants,
and to invite participants back for a repeat scan some years
later.

Genotyping, whole exome sequencing & whole
genome sequencing for all participants.
Linkage to a wide range of electronic
health-related records, including death, cancer,
hospital admissions and primary care records.

Data on more than 30 key biochemistry
markers from all participants, taken from samples collected at
recruitment and the first repeat assessment.

Physical activity data over a 7-day period
collected via a wrist-worn activity monitor for 100,000
participants plus a seasonal follow-up on a subset.

Data on a range of exposures and
health outcomes that are difficult to assess via routine health
records, including diet, food preferences, work history, pain,
cognitive function, digestive health and mental health.

A full baseline assessment
is undertaken during the imaging assessment of 100,000
participants.
Blood & urine was collected from all participants,
and saliva for 100,000.


https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/imaging-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/genetic-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/health-related-outcomes-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/biomarker-data
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=1008
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/questionnaire-data
https://www.ukbiobank.ac.uk/enable-your-research/about-our-data/baseline-assessment
http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100078

— Al for Image Segmentation —
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: : : : o R. Azad et al., “Medical Image Segmentation Review:
Liu, Q., Xu, Z., Bertasius, G., & Niethammer, M. (2023). SimpleClick: The success of U-Net.” arXiv, Nov. 27, 2022.

Interactive Image Segmentation with Simple Vision Transformers. . : P : :
ICCV.. 22290-22300. 2023 Minaee, Shervin, et al. "Image segmentation using
h ' ' deep learning: A survey." IEEE PAMI 44.7 (2021): 3523-3542.



— Image Analysis Pipeline —
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Wang, X. and Zhu, H (2024). Artificial Intelligence in Image-based Cardiovascular Disease Analysis: A Comprehensive Survey and
Future Outlook



—Ecological Layout for Large-scale Analysis —
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Structural Learning Prediction



— Foundation Models for GMAI and Pan-Biobank +—

Perspective

P
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Literature | Publications

Multimodal self-supervised training Medical domain knowledge Flexible interactions

Q8&A exchanges ¢ @

Clinical Knowledge Multimodal inputs
notes graphs and outputs

Reasoning with multiple Dynamic task specification
knowledge sources

o 4 3O § =

Chatbots for Interactive Augmented Grounded Text-to-protein Bedside decision
patients note-taking procedures radiology reports generation support

Regulations: Application approval; validation; audits; community-based challenges; analyses of biases, fairness and diversity

Fig.1|Overview ofaGMAImodel pipeline.a, AGMAImodelis trained on out tasks that the user can specifyin real time. For this, the GMAI model can
multiple medical data modalities, through techniques such as self-supervised retrieve contextualinformation from sources such as knowledge graphs or
learning. Toenable flexible interactions, datamodalities suchasimagesordata  databases, leveraging formal medical knowledge to reason about previously
from EHRs can be paired with language, eitherin the formoftextor speechdata.  unseen tasks. b, The GMAImodel builds the foundation for numerous

Next, the GMAImodel needs to access various sources of medical knowledgeto  applicationsacross clinical disciplines, each requiring careful validation and
carry out medical reasoning tasks, unlocking awealth of capabilities that can regulatory assessment.

beusedindownstreamapplications. The resulting GMAImodel then carries

Moor, M., ... ., Rajpurkar, P. (2023) Foundation models for Pan-biobank studies
generalist medical artificial intelligence. Nature.



— UKBFound —

Data Preprocessing Data Modeling
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Jiang.et al. (2024). UKBFound: A Foundation Model for Multi-Disease Prediction and Individual Risk Assessment Based on UK Biobank Data
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Yang et al., Alzheimer’s Disease Knowledge Graph Enhances Knowledge Discovery and Disease Prediction.
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— Deep Mathematics/Statistics —

* Level 1: Demonstrates that a method works under
restricted conditions.

 Level 2: Identifies key components that ensure the
method's validity under realistic conditions.

 Level 3: Provides theoretical results that guide the
further development of the method in more general
settings.



— Deep Learning Theory —

Data = {(X:, ¥i) e g P(X)P(y[X)
Model

Suh and Cheng (2024)

| Y’i:.fO(X’i)+€‘i7 i:1727"'7n7
Assumption E(Ez‘xz) — O

Ideal . . 2
Estimate fo= argmin Ep(f):= argmin : Z (vi — f(x,i))z}
feF(L,p.N) feF(LpN) LTV

Complexity Measure of 7  Approx. Error

Risk Error E(fn) —E(fp) < - ., + n + Approx. Error?

€ Apprx = Sup inf f—f
Approx Error pp1 7 eG FEF(L,p.N) | p”Lp

Complexity VCdlm(J—"), Pdinl(f) = O(LNlog(N))



— Functional Equivalence

Shen et al. (2024) ICML.

Theorem 3 (Covering number of shallow neural networks)

Consider the class of shallow neural networks JF := F(1, dy, dy, B) parameterized by
§€0=-B.B|. Suppose the radius of the domain & of f € T is bounded by some
B, >0, and the activation oy is continuous. Then for any ¢ > 0, the covering number

N(F,e |- ) < (16B°(B, + 1aheh fe)° x % /. (3)

where p denotes the Lipschitz constant of a1 on the range of the hidden layer (i.e,
[~/cB(B) +1).v/chB(B, +1)]), and S, = dyc + . is the total number of parameters
in the linear transformation from input to the hidden layer, and S = dy % dy +2dy + 1 is
the total number of parameters.

0 A reduced complexity (by /) compared to existing studies 25, 3, 27, 23, 17]. Fora
shallow ReLU network with d; = 126, covering number reduced by & 10

Theorem 4 (Covering number of deep neural networks)

Consider the class of deep neural networks J := F(L,do, dh,..., di, B) parameterized by
6 ©=[-B,B]°. Suppose the radius of the domain X of f € F is bounded by B for
some B, >0, and the activations o1,...,a; are locally Lipschitz. Then for any e >0, the

/ J

covering number N'(F,¢, |- |o) is bounded by

LB 1B )t )

dil xdy! x oo xd!

Where S = Z;‘L:o didis1 + diyy and p; denotes the Lipschitz constant of o; on the range
of (i —1)-th hidden layer, especially the range of (i — 1)-th hidden layer is bounded by
-8, B with BY < (2B} pyd for i =1,...,L.

0 A reduced complexity (by (dh!d!---dy!)) over existing studies [25, 3, 27, 23, 17].

o Increasing depth L does increase complexity. The increased hidden layer [ will have a
d;!) discount on the complexity.




Deep Mathematics/Statistics =

Existing results cannot explain why deep
and/or reinforcement learning methods work
In realistic scenarios.

Existing mathematical and statistical theory
IS not good enough to validate many
algorithmic modelling.

Many breakthroughs in algorithmic modeling
do not have any mathematical reasoning at
the beginning.



— Deep Mathematics/Statistics —

8 ey

 Start with realistic and

« Understand the signal patterns
challenging scenarios.

and complexity of a specific problem.

« Formulate the problem and
understand how a method really
works in simulated and real setting

=

 Prove theoretical results‘z\/f
from Level 1to Level 3. -

UNC Biostatistics BIG-KP | https://bigkp.org/



— Statistics Up Al Alliance —

https://statsupai.org

< Stats Up Al

Part 3 -- Statistical
Education in the Age
of Al
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139 /RINZ 1

Part 1 -- Statistical
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Applications and Al
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