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SUMMARY
Understanding the organization of the cell cycle has been a longstanding goal in cell biology. We combined
time-lapse microscopy, highly multiplexed single-cell imaging of 48 core cell cycle proteins, and manifold
learning to render a visualization of the human cell cycle. This data-driven approach revealed the comprehen-
sive ‘‘structure’’ of the cell cycle: a continuumofmolecular states that cells occupy as they transition fromone
cell division to the next, or as they enter or exit cell cycle arrest. Paradoxically, progression deeper into cell
cycle arrest was accompanied by increases in proliferative effectors such as CDKs and cyclins, which can
drive cell cycle re-entry by overcoming p21 induction. The structure also revealed the molecular trajectories
into senescence and the unique combination of molecular features that define this irreversibly arrested state.
This approach will enable the comparison of alternative cell cycles during development, in response to envi-
ronmental perturbation and in disease. A record of this paper’s transparent peer review process is included in
the supplemental information.
INTRODUCTION

Our current understanding of the human cell cycle has been

assembled in piecemeal fashion from decades of biochemical

and genetic experiments (Nurse, 2000). Early studies identifying

discrete time periods of DNA synthesis and cell division (Howard

and Pelc, 1951) led to adoption of a five-phase model that sep-

arates the cell cycle into four functionally distinct proliferative

phases (G1, S, G2, and M) and a single state of arrest (G0).

This canonical model, which has shaped our thinking for over

70 years, provides a useful framework for mapping key molecu-

lar events that govern the progression of a typical cell through the

cell cycle.

Advances in molecular biology, particularly in budding yeast,

led to the identification of numerous cell cycle regulators (e.g.,

cyclins and cyclin-dependent kinases [CDKs]) controlling DNA

replication, mitosis, and cell cycle arrest (Glotzer et al., 1991;

Morgan, 2007; Murray, 1994). To accommodate these discov-

eries, more sophisticated models were proposed to describe

the cell cycle’s overall behavior. One class of models views the

cell cycle as an oscillator, or molecular clock, in which the peri-

odic activity of CDKs and expression of E2F-driven genes drive

cell proliferation (Coudreuse and Nurse, 2010; Murray and

Kirschner, 1989; Orlando et al., 2008). Alternative models

emphasize the sequential nature of cell cycle events that, like

dominoes, must be completed in a defined order before moving
on to the next molecular step in the sequence (Castor, 1980;

Chao et al., 2019; Smith and Martin 1973). Both models have

provided helpful frameworks for understanding the fundamental

nature of cell cycle progression.

Over the last 10 years, however, a wave of single-cell studies

has shown that progression through the cell cycle cannot be

reduced to a single, fixed sequence of molecular events. Cells

can progress at different rates through each of the proliferative

phases (Araujo et al., 2016; Chao et al., 2019; Shields, 1977;

Smith andMartin, 1973). Individual cells may also vary in the pre-

cise molecular paths taken through these phases (Cappell et al.,

2016, 2018; Liu et al., 2020; Yang et al., 2020). Moreover, transi-

tions into—or out of—cell cycle arrest are at least as heteroge-

neous as the proliferative cell cycle but more poorly understood.

Cells may exit into reversible (‘‘quiescent’’) or irreversible

(‘‘senescent’’) states of arrest, from different phases of the prolif-

erative cell cycle and driven by different mechanisms (Marescal

and Cheeseman, 2020; Sagot and Laporte, 2019). After exiting

the cell cycle, individual cells may re-enter after variable lengths

of time (Barr et al., 2017; Chung et al., 2019; Overton et al.,

2014;Spencer et al., 2013;Yanget al., 2017, 2020), but themech-

anisms that regulate this decision remain unclear. It also appears

that certain quiescent states can become ‘‘deeper’’ with time,

requiring a larger or longer stimulus to re-enter the cell cycle

(Kwon et al., 2017; Owen et al., 1989; Wang et al., 2017), and in

some cases may become irreversible (Fujimaki et al., 2019;
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Marthandan et al., 2014; Sousa-Victor et al., 2014). These studies

collectively imply that the cell cycle is a highly plastic process in

which cells may traverse different mechanistic routes en route

to cell division or cell cycle arrest. Although this heterogeneity

is becoming increasingly appreciated, we lack a comprehensive

model that integrates single-cell heterogeneity into the overall or-

ganization of cell cycle progression.

Recent work has begun using single-cell mRNA sequencing to

describe the heterogeneity in cell cycle progression (Kowalczyk

et al., 2015; Moussa and M�andoiu, 2020; Schwabe et al. 2020).

However, it is widely appreciated that progression through the

cell cycle is primarily driven by changes in protein turnover,

post-translational modifications, or the subcellular localization of

key effectors (Morgan, 2007)—features that cannot be captured

by transcriptomics. Other studies using protein-based measure-

ments to study cell cycle progression have focused on mapping

the dynamics of individual cell cycle effectors along a one-

dimensional, generalized model of the cell cycle (Gookin et al.,

2017; Gut et al., 2015; Mahdessian et al., 2021). These ap-

proaches provide a rich resource for describing the dynamics of

proteins during a typical cell cycle. However, because they do

not measure higher-order relationships among multiple effectors

(e.g., simultaneous measurements of cyclins, CDKs, and CDK in-

hibitors in individual cells), they cannot provide a comprehensive

description of single-cell states and thus lack the capacity to

map alternative cell cycle trajectories or study how multiple cell

cycle regulators interact to coordinate cell cycle fate decisions.

To look for evidence of cell cycle heterogeneity at the single-

cell level and to better understand the mechanistic basis of this

plasticity, we performed time-lapse imaging to record the cell cy-

cle histories of individual human epithelial cells followed by iter-

ative immunofluorescence of 48 core cell cycle regulators to

obtain high-dimensional, protein-based cell cycle signatures of

thousands of individual cells. We used manifold learning to proj-

ect these cells onto two- and three-dimensional surfaces to visu-

alize the cell cycle as a sequence of continuousmolecular states,

ultimately revealing the underlying ‘‘structure’’ of the cell cycle at

the protein level. We find that the primary source of heterogene-

ity in the proliferative cell cycle occurs shortly after cell division,

when cells diverge down two distinct paths, either immediately

re-entering the cell cycle or diverting into a quiescent state driven

by p21 induction. Through targeted experiments, we demon-

strate that cell cycle re-entry from this quiescent state does

not necessarily require a reversal of the mechanisms that

induced arrest and that cells can overcome p21 induction and

re-enter the cell cycle by increasing the expression of prolifera-

tive effectors such as cyclin D. Cells that remain arrested even-

tually transition into an irreversibly arrested senescent state.

We define a uniquemolecular signature for this state and provide

evidence that cells can enter a similar senescent state from

either G1 or G2.

RESULTS

Visualizing the structure of the cell cycle
Starting with an asynchronous population of non-transformed

human retinal pigmented epithelial cells (hTERT-RPE-1, abbrevi-

ated hereafter as RPE cells; Figure 1A) expressing a single fluo-

rophore cell cycle reporter (PCNA-mTurquoise2 [mTq2]; Zerjatke
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et al., 2017), we performed time-lapse imaging to record the cell

cycle histories of individual cells, including the cell cycle phase

(i.e., G0/G1, S, G2, or M) (Figure 1B) and age (i.e., time elapsed

since previous mitosis) of each cell. Following time-lapse imag-

ing, cells were fixed and then subjected to multiple rounds of

immunofluorescence using iterative indirect immunofluores-

cence imaging (4i) to obtain measurements of 48 core cell cycle

effectors (Table S1) in a total of 8,850 individual cells. From this

imaging dataset we extracted 246 single-cell features including

the expression and localization of each protein (i.e., in the nu-

cleus, cytosol, perinuclear region, and plasma membrane), cell

morphological features (e.g., the size and shape of the nucleus

and cell), and features of the microenvironment (e.g., local cell

density), culminating in a multivariate cell cycle signature for

each cell in the entire population.

Cells at similar positions in the cell cycle should possess similar

cell cycle signatures (as defined by 4i), and thus be located close

to one another on a lower dimensional manifold within this high-

dimensional feature space. To identify and visualize this manifold,

we used potential of heat-diffusion for affinity-based transition

embedding (PHATE), a nonlinear manifold learning approach

that performs well for continuous and branched trajectories in

high-dimensional space (Moon et al., 2019). However, if we

perform PHATE using this entire 246-dimensional feature set,

we obtain a two-dimensional ‘‘structure’’ that fails to adequately

capture progression through the cell cycle (Figure S1A). We

reasoned that if our feature set contains variables that differ

among cells in a cell cycle-independent manner, the manifold

we obtained would be convoluted by other biological processes.

We therefore used a machine learning approach to restrict our

feature set to variables that best predict the cell cycle ‘‘state’’ of

each cell (see STAR Methods). We trained two random forest

(RF) models to predict either cell cycle phase or age (using the

ground truth annotations obtained by time-lapse imaging) from

the 4i signatures of individual cells (with a 95.5% accuracy for

phase and a root-mean-squared error (RMSE) = 125.8 min and

R2 = 0.862 for age predictions) and calculated the predictive po-

wer of each feature. Features were ranked by their predictive po-

wer across both models and a minimal feature set that accurately

predicted cell cycle state (i.e., both phase and age) was deter-

mined (Figures S1B and S1C; Table S2). We also used these

models to infer the phase and age of cells that were not captured

by time-lapse imaging (Figures 1C, 1D, S1F, and S1G; Videos S2

and S3). Similar inferences of phase and age were obtained using

a convolutional neural network trained on the same data (Phase:

95.7% accuracy, concordance with RF model = 94.8%; age:

RMSE = 123.7 min; Figures S1H–S1K).

Using this minimal feature set, we obtained a continuous

structure that successfully captured the progression of cells

through the canonical phases of the cell cycle (G1, S, G2, and

M, respectively) (2D structure in Figure 1; 3D structure in Videos

S1, S2, S3, and S4; virtual-reality-compatible dataset available

[see data and materials availability]). This three-armed structure

was reproducible across PHATE parameter space (Figure S2A),

individual replicates (Figure S2B), and in another human epithe-

lial cell line (humanpancreatic epithelial cells, HPNE; FigureS2C).

We observed that G0/G1 cells encompass most of the left and

central arms, and S/G2 cells progressively reside along the right-

most arm, respectively (Figure 1C). While cell cycle progression
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Figure 1. Probing the structure of the cell cycle

(A) Schematic of the experimental approach.

(B) Distributions of cell cycle phase and age (time since mitosis) of all cells annotated by time-lapse imaging.

(C and D) Cell cycle phase (C) and age (D) annotations/predictions (see STAR Methods) of 8,850 individual cells mapped onto the structure. Representative

images of mitotic cells and their locations on the structure are shown in (C).

(E and F) Distribution of RB phosphorylation (phospho/total nuclear intensity) in individual cells (E) mapped on the structure (F).

(G) Proliferative (G1/S/G2/M) and arrest (G0) trajectories through the five canonical phases. Scale bars, 10 mm.
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toward mitosis is clearly represented along the right arm of the

structure, mitotic cells were located at the tip of the central

arm. Visual inspection of the immunofluorescence images of

cells along the central arm revealed a progression through nu-

clear envelope reformation and cytokinesis, events consistent

with the late stages ofmitosis. Similarly, cells at the tip of the right

arm possessed features of late G2 and early M, including DNA

condensation and nuclear envelope breakdown, indicating that

cells follow a trajectory connecting the tip of the right arm with

the top of the central arm as they proceed through mitosis. Map-

ping cell cycle age onto the structure indicated that the youngest
cells lie near the tip of the central arm where newborn cells

emerge out of mitosis and into G1 and that age increases as cells

progress up both the left and right arms (Figure 1D).

While the PCNA-mTq2 reporter allows delineation of the pro-

liferative phases of the cell cycle (G1/S/G2/M) (Zerjatke et al.,

2017), it cannot distinguish G0 from G1 cells. The phosphoryla-

tion and inactivation of the retinoblastoma protein (RB), on the

other hand, represents a major checkpoint controlling cell cycle

re-entry and is often used as a molecular correlate to define

the boundary between G0 (i.e., cell cycle arrest) and G1 (i.e.,

cell cycle commitment) (Moser et al., 2018; Pardee, 1974;
Cell Systems 13, 1–11, March 16, 2022 3



Pseudotime
0 0.8

Proliferative Arrested

0 10 20
Cell cycle age (h)

0.0

0.2

0.4

0.6

0.8

Ps
eu

do
tim

e

Phase
G1
S
G2

r = 0.895 r = 0.827
0 10 20

Arrest duration (h)

0.0

0.2

0.4

0.6

0.8

1.0

Ps
eu

do
tim

e

Phase
G0

A B C

Figure 2. Measuring the rate of molecular change during the cell cycle

(A) Diffusion pseudotime (DPT) is mapped onto the cell cycle structure.

(B andC) Comparisons of molecular age (pseudotime) and actual cell cycle age along the proliferative (B) and arrest (C) trajectories. Individual cells are colored by

cell cycle phase. Mitotic cells are excluded.
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Zetterberg and Larsson, 1985). In our 4i data, we observed

bimodality in RB phosphorylation across the entire population

(Figure 1E) and a clear delineation between these two cellular

states (high versus low RB phosphorylation) along the central

arm, thus distinguishing G0 from actively cycling cells (Fig-

ure 1F; Video S4). We use this RB phosphorylation status to

identify actively proliferating versus arrested cells throughout

the manuscript.

Whether we use the age of cells to infer how cells progress

along the structure with time (Figure 1D), or diffusion pseudotime

(DPT, Figure 2A), which measures changes in molecular state

along the structure (Haghverdi et al., 2016), we infer two principal

trajectories: (1) a cyclical, ‘‘proliferative trajectory’’ starting at

the base of the central arm and progressing along the right

arm through G1, S, and G2, before looping back to the central

arm during mitosis, and (2) an ‘‘arrest trajectory’’ along the

left arm (Figure 1G).

If we compare the actual age of cells (as determined by time-

lapse imaging) with their ‘‘molecular age’’ (as determined by

DPT), there is a strong correlation along both the proliferative

(r = 0.895) and arrest trajectories (r = 0.827) (Figures 2B and

2C). However, the rate of molecular change is not constant along

these trajectories. Cells rapidly accumulate large molecular

changes at the G1/S transition as cells initiate DNA replication,

and once again in G2 after DNA replication has ceased and cells

prepare for mitosis (Figure 2B). We will elaborate on the molec-

ular changes that accompany progression along the proliferative

trajectory in the next section. Along the arrest trajectory, there is

a relatively constant rate of molecular change with time, except

for a subpopulation of long-arrested cells that exhibit compara-

tively large changes in molecular state (Figure 2C). These cells

possess features consistent with irreversibly arrested senescent

cells and will be examined in greater detail later in this

manuscript.

Mapping the mechanisms of the proliferative cell cycle
(G1/S/G2/M)
To validate our approach, we used cell cycle age to temporally

order actively cycling cells along the proliferative trajectory and

examined well-established mechanisms known to drive cell cy-
4 Cell Systems 13, 1–11, March 16, 2022
cle progression (Data S1). This approach successfully ordered

key molecular events that have previously been shown to regu-

late the G1/S transition (Figure 3A) (Hume et al., 2020). The

core molecular unit regulating this decision is the RB-mediated

inhibition of E2F transcription factors (Stallaert et al., 2019),

which controls the expression of S-phase genes (DeGregori

et al., 1995). Commitment to DNA replication is triggered by

the phosphorylation and inhibition of RB by cyclin:CDK com-

plexes. In early G1, RB is primarily phosphorylated by cyclin

D:CDK4/6 (Chung et al., 2019), and we observed that cells begin

their cell cycle with high cyclin D1 expression (Figure 3B). This

cyclin D:CDK4/6-driven phosphorylation of RB in early G1 dere-

presses E2F-regulated genes important for DNA replication

including expression of E2F1 itself (Figure 3C) (Narasimha

et al., 2014; Sanidas et al., 2019). E2F activity also stimulates

the production of cyclin E (Figure 3D), which activates CDK2

to maintain RB phosphorylation as cyclin D levels begin to

decrease (Figure 3B) (Chung et al., 2019; Gookin et al., 2017).

Another important event in the G1/S transition is the inactivation

of APC/C complexes, which degrade and prevent the accumula-

tion of S phase proteins during G1. The increase in cyclin

E:CDK2 activity in late G1 stimulates the destruction of the

Cdh1 subunit (Figure 3E), switching off APC/C and permitting

S phase initiation (Cappell et al., 2016). The inactivation of

APC/C also allows cyclin A to accumulate as S phase begins

(Figure 3F) to replace cyclin E and maintain CDK2-dependent

RB phosphorylation through to mitosis.

DNA replication was clearly visible on the structure, with DNA

content doubling over the course of S phase (Figure 3G). Simi-

larly, we localized additional S phase events important for DNA

replication including the appearance of PCNA foci at replication

complexes (quantified as variability in nuclear intensity) (Fig-

ure 3H) and the replication-coupled destruction of p21 (Figure 3I).

Upon entry into G2, cyclin B expression increases first in the

cytoplasm and then in the nucleus (Figures S3A andS3B) as cells

move toward mitosis (Santos et al., 2012). We also observed in-

creases in cyclin D1 (Figure 3B) and its transcription factor c-Myc

(Figure S3C), as well as NF-kB activation (Figure S3D) during G2,

which then remained elevated through mitosis and into the

subsequent G1 phase of daughter cells, resulting in U-shape
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Figure 3. Visualizing the mechanisms of the G1/S transition

(A) Mechanistic model of the core events regulating progress through G1 and the transition to S.

(B–I) Median nuclear intensities of cyclin D1 (B), E2F1 (C), cyclin E (D), Cdh1 (E), cyclin A (F), and p21 (I), DNA content (copy number) (G), and variability in nuclear

PCNA intensity (H) are mapped onto cells in the proliferative trajectory (left panels) and plotted against cell cycle age (right panels). Population medians in time

courses indicated by solid gray lines and individual cells are colored by cell cycle phase (G1, blue; S, orange; G2, green). Non-cycling (G0) cells (phospho/total

RB < 1.6) are shown in gray on the structure and are excluded from time courses.
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dynamics along the proliferative trajectory, as recently reported

by Gookin et al. (2017). Thus, the cell cycle structure accurately

recapitulated many of the key molecular events governing the

progression of cells through the four proliferative cell cycle

phases.

Trajectories into and out of cell cycle arrest (G0)
Next, we investigated the molecular changes that occur as cells

progress along the arrest trajectory (Figure 4; Data S2), for which

comparatively less is known. We noted that all cells exited

mitosis with high RB phosphorylation along a single path down

the central arm and then quickly diverged along two distinct tra-

jectories within the first 2–3 h following mitosis: either progress-

ing directly into G1 with sustained RB phosphorylation or exiting

the cell cycle into G0 following the loss of RB phosphorylation

(Figures 1F, 4A, S4A, and S4B). In each daughter cell, this fate

decision was found to be governed primarily by the balance be-

tween cyclin D and p21 expression (Figures 4B, S4A, S4C, and

S4D), as previously shown (Chen et al., 2013; Overton et al.,

2014; Yang et al., 2017). We found that the decrease in the cyclin

D1:p21 ratio that precedes cell cycle exit was not due to a

decrease in cyclin D1, but rather to an increase in p21 in early

G1 (Figures 4B, 4D and S4A). This induction of p21 in early G1

occurred simultaneously with the loss of RB phosphorylation

as cells diverted to the arrest trajectory (Figures S4A and S4B),

consistent with the CDK2low/p21high spontaneous state of arrest

first identified by Spencer et al., 2013.
Further examination of the arrest trajectory revealed that cells

do not exit the cell cycle into a single, static arrest state awaiting

cell cycle re-entry. Instead, cells progressed further along this tra-

jectory with time (Figure 1D) accompanied by a progressive in-

crease in p21 expression (Figure 4D), indicating an increasing

depth of arrest as has been previously suggested (Fujimaki

et al., 2019; Gookin et al., 2017; Kwon et al., 2017; Wang et al.,

2017). To systematically assess themolecular changes that occur

as cells progress further along the arrest arm, we trained a RF

model to predict the duration of cell cycle arrest based on the 4i

signature of a given cell (Figure 4J). Surprisingly, besides

increasedp21expression, themostsignificantmolecular changes

that accompanied progression along the arrest arm were factors

known to promote cell cycle progression, not arrest. These

included increases in the expression of CDK4 (Figure 4E) and

CDK2 (DataS2) aswell as theG1cyclinsD1 (Figure 4C) andE (Fig-

ure 4F), andadecrease inRBexpression (Figure4G).We therefore

hypothesized that this accumulation of proliferative effectors (and

loss of RB) that occurs during cell cycle arrest may provide a

mechanism for cell cycle re-entry—not by reversing the increase

in p21 expression that originally drove cell cycle exit—but instead

by overcoming it with excessive cyclin and/or CDK expression.

To test this hypothesis, we performed time-lapse imaging of

RPE cells expressing fluorescent p21 (p21-mTq2) and cyclin

D1 (cycD1-Venus) from their endogenous loci and a CDK2 activ-

ity sensor (DHB-mCherry) to monitor cell cycle exit and re-entry

(Spencer et al., 2013). The majority of cells (86%) emerged from
Cell Systems 13, 1–11, March 16, 2022 5
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Figure 4. Cell cycle exit and re-entry from arrest (G0)

(A) Divergence of cell cycle trajectories into G1 or G0 following cell division and subsequent cell cycle re-entry fromG0. Age of newborn cells (<3 h sincemitosis) is

mapped onto the structure.

(B–I) The z-normalized nuclear intensity ratio of cyclin D1:p21 (B) and median nuclear expression of cyclin D1 (C), p21 (D), CDK4 (E), cyclin E (F), RB (G), E2F1 (H),

and Cdt1 (I) are mapped onto G0/G1 cells. Note the dotted circle representing cell cycle re-entry in F, H, and I. Non-G0/G1 cells are shown in gray.

(J) List of features with the highest predictive power in a random forest regression model trained to predict arrest duration.

(K) Representative single-cell traces of p21-mTq2 (green) and cyclin D1-YFP expression (blue) aligned at anaphase. The dotted line represents cell cycle re-entry

as indicated by CDK2 reactivation (an increase in the cytoplasmic:nuclear ratio of DHB-mCherry, not shown).

(L) p21 expression at cell cycle exit (1 h post-mitosis) versus re-entry (at time of CDK2 reactivation) in individual cells. Statistical significancewas determined using

a Student’s paired t test.

(M) Median nuclear intensities of cyclin D1 and p21measured by time-lapse imaging at cell cycle re-entry (r2 = 0.587). Individual cells are colored by their duration

of arrest. N = 117 cells for (L) and (M).
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cell cycle arrest (as indicated by the reactivation of CDK2) in

the continued presence of elevated p21, often shortly after an in-

crease in cyclin D1 expression (Figures 4K, S5A, and S5B).

These cells re-entered the cell cycle at equal or higher p21

than was initially required to induce cell cycle exit following cell

division (Figure 4L). We also observed some instances of cell cy-

cle re-entry that were accompanied instead by a prior reduction

in p21 (Figures S5C and S5D). This cellular heterogeneity in

effector dynamics at re-entry indicates that neither an increase

in cyclin D nor a decrease in p21 alone can fully explain the timing

of cell cycle re-entry in all cells. Indeed, we observed that the

amount of p21 that is permissible for cell cycle re-entry is at least

partially determined by cyclin D1 expression (r2 = 0.587, Fig-

ure 4M), with higher cyclin D1 expression permitting re-entry at

higher p21 expression suggesting that, like cell cycle exit, re-en-

try is also controlled by the balance between p21 and cyclin D.

Altogether, these data demonstrate that a complete reversal of

the p21 induction that drives cell cycle arrest is not required for

cell cycle re-entry and that increased expression of countervail-
6 Cell Systems 13, 1–11, March 16, 2022
ing proliferative effectors such as cyclin D1 can permit cell cycle

re-entry without decreasing p21 expression.

Consistent with these observations, the structure revealed that

cells do not simply re-enter the cell cycle by reversing back down

the arrest trajectory but instead can traverse along a distinct, fun-

nel-shaped trajectory across the inside of the structure, spanning

the gap between the arrest arm and G1 (Figure 4A). Cells along

this re-entry trajectory possessed increased expression of cyclin

D1 (Figure 4C), a high cyclin D1:p21 ratio (Figure 4B), and highRB

phosphorylation (Figure 1F; Video S4), consistent with cell cycle

re-entry. Having spent variable amounts of time inG0, these cells

were relatively old comparedwith otherG1cells (Figure 1D;Video

S2) and exhibited characteristics of cells preparing for DNA repli-

cation including increased expression of cyclin E (Figure 4F),

E2F1 (Figure 4H), and Cdt1 (Figure 4I).

Cellular senescence
Graph-based clustering resolved a subpopulation of cells at the

tip of the arrest trajectory (Figure 5A) undergoing rapid molecular
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Figure 5. Molecular signature of cellular senescence

(A) Graph-based clustering of arrested cells mapped onto the cell cycle structure. Senescent cells are found in cluster 4.

(B) List of features with the highest predictive power in a random forest model trained to identify senescent cells (cluster 4) among the entire population of ar-

rested cells.

(C and D) Cell area (C) and ratio of cytoplasmic area:DNA content (D) mapped onto arrested cells. (E–H) Validated features of senescent cells mapped onto the

arrest trajectory of the cell cycle structure (left panels), single-cell distributions of log2-normalized feature intensity in non-senescent (b-galactosidase

(legend continued on next page)
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changes after >12 h of arrest (Figure S6A) and possessing a

distinct molecular signature among arrested cells (Figure 5B).

These cells had the longest durations of arrest (Figure 1D),

were at least three to four times larger than the average arrested

cell (Figure 5C), and possessed a high cytoplasm-to-DNA ratio

(Figure 5D), a hallmark of irreversibly arrested senescent cells

(Lanz et al., 2021; Neurohr et al., 2019). To validate this putative

cluster of senescent cells and the features that define it, we

combined immunofluorescence measurements with a fluores-

cent reporter of b-galactosidase activity (Figure S6B), an estab-

lished hallmark of senescence (Hjelmeland et al., 1999). Senes-

cent cells possessed increased abundance of CDK4, CDK6,

GSK3b, and p27, as well as elevated phosphorylation of

p27(Thr157), p21(Thr145), and p53(Ser6) (Figures 5E–5H, S6C–

S6E). While each of these individual features were found to be

significantly elevated in senescent cells, none were perfectly

predictive of the senescent state on their own. Instead, senes-

cence is cellular state characterized by coordinated changes in

multiple cell cycle/signaling effectors. Our multivariate signature

of cell cycle state provides a more accurate prediction of senes-

cent cells (97.5%) than any individual feature (Figure S6F).

These senescent cells at the end of the arrest trajectory

possessed either 2 or 4 copies of DNA (2C or 4C; Figure 5I)

(and no multinucleated cells were observed), indicating that

some cells must have exited the proliferative cell cycle along a

second arrest trajectory that diverts after DNA replication.

Indeed, we identified a population of cells residing along a

path between G2 and the arrest terminus with 4 copies of DNA

(Figure 5I; Video S1), low RB phosphorylation (Figure 1D), and

elevatedmarkers of a DNA-damage response including elevated

phospho-H2AX (Figure 5J) and p21 (Figure 5K), consistent with

cell cycle exit due to the G2/M DNA-damage checkpoint (Bunz
(b-gal)-negative, green) and senescent (b-gal-positive, orange) cells (middle pane

(right panels). All senescent features shown here (and in Figure S6) showed sign

populations (p < 0.01 using an unpaired Welch t test with unequal variance).

(I–K) DNA content (I) and nuclear median intensity of phospho-H2AX (J) and p21 (

total RB > 1.6) are shown in gray on cell cycle structures.
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et al., 1998). Thus, cells may progress into senescence from

two trajectories: (1) after exiting the cell cycle following cell divi-

sion and remaining arrest for an extended duration or (2) by

engaging the DNA-damage checkpoint in G2 (Figure 6).
DISCUSSION

We combined time-lapse microscopy, multiplexed imaging, and

manifold learning to reveal the underlying structure of the human

epithelial cell cycle (Figure 6). This structure consists primarily of

a cyclical, proliferative trajectory through G1/S/G2/M, and a

terminal arrest trajectory through G0 that diverges from the

proliferative trajectory soon after mitosis. We also observe a sec-

ond arrest trajectory that diverges soon after the S/G2 transition,

corresponding to the G2 DNA-damage checkpoint. Both arrest

trajectories converge on an irreversibly arrested, senes-

cent state.

This structure is consistent with an emerging model of the cell

cycle in which the fate of cells diverges soon after cell division

(Arora et al., 2017; Min and Spencer (2019); Overton et al.

(2014); Spencer et al. (2013); Yang et al. 2020). In this model,

some cells maintain a high RB phosphorylation state as they

exit mitosis and proceed directly into G1, while others divert

from the proliferative cell cycle to a state of transient cell cycle

arrest, driven by an increase in p21 and a loss of RB phosphor-

ylation (Figures 4A–4D, S4). This bifurcation in daughter cell fates

was first observed by time-lapse imaging using a fluorescent re-

porter of CDK2 activity, revealing two distinct dynamics of CDK2

activity in cells following cell division (Spencer et al., 2013). In

cells that immediately commit to cell cycle re-entry, CDK2 be-

gins to increase soon after cell division. In cells that exit to G0,

on the other hand, CDK2 activity remains low for the duration

of cell cycle arrest. We observed a similar bifurcation of CDK2

activity following mitosis by time-lapse imaging and used

CDK2 reactivation as an indicator of cell cycle re-entry from

this spontaneous state of arrest (Figures 4K–4M).

Once committed to the proliferative trajectory, we find that

cells traverse a single path through DNA replication and cell divi-

sion. The primary source of heterogeneity observed among cells

was the bifurcation of daughter cell trajectories after mitosis (Fig-

ure 4A). Although an alternative mechanistic route through G1

has recently been observed when the canonical route is blocked

(i.e., by CDK4/6 inhibition) (Liu et al., 2020), when grown under

ideal culture conditions, we observed little evidence of alterna-

tive trajectories through the proliferative cell cycle. This topology

was reproducibly obtained from replicate cell populations,

across PHATE parameter space and in a second human epithe-

lial cell line (Figure S2).

Progression further along the arrest trajectory is accompanied

by an increase in p21 expression (Figures 4D and 4K), consistent

with a ‘‘deepening’’ of cell cycle arrest (Fujimaki et al., 2019;

Kwon et al., 2017; Wang et al., 2017). However, we also found
ls), and representative images of feature and b-gal staining of senescent cells

ificant differences in feature intensity between non-senescent and senescent

K) mapped onto the structure. Scale bar, 40 mm. Non-arrested cells (phospho/
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that progression along the arrest trajectory is paradoxically

accompanied by molecular changes that typically stimulate pro-

liferation, not arrest. These changes include increased expres-

sion of multiple cyclins and CDKs (Figure 4J). This observation

is consistent with a recent report that cyclin D and E increase

during cell cycle arrest in MCF10A cells (Gookin et al., 2017). Us-

ing time-lapse imaging, we revealed that concomitant increases

in proliferative effectors such as cyclin D1 allow cells to re-enter

the cell cycle in the presence of elevated p21 (Figures 4K, 4M,

S5A, and S5B). Whereas p21 is the molecular entity that couples

cell stress to cell cycle arrest (Arora et al., 2017; Min and

Spencer, 2019), mitogenic signaling stimulates the production

of cyclin D to govern cell cycle re-entry (Min et al., 2020). Similar

to the bifurcation of daughter cells immediately following cell di-

vision, our data support amodel whereby cell cycle re-entry from

G0 is controlled by integrating these competing mitogenic and

stress signals (Stallaert et al., 2019). While the duration of cell cy-

cle arrest tends to increase with both p21 and cyclin D1 expres-

sion (Figure 4M), we could not identify a clear quantitative rela-

tionship that predicted the timing of cell cycle re-entry based

solely on these two effectors. Instead, our data suggest that,

the precise timing of cell cycle re-entry (i.e., either immediately

after mitosis or after some duration in G0) is ultimately governed

by the balance between theG1 cyclins (cyclin D and cyclin E) and

CDK inhibitors such as p21, p27, and p16, which act respectively

as ‘‘gas’’ and ‘‘brakes’’ for CDK activity to control the phosphor-

ylation state of RB (Stallaert et al., 2019). This convergence of

multiple positive and negative regulators of CDK activity allows

the cell to integrate information about both its environment

(e.g., mitogens and local cell density) and history (e.g., prior

DNA damage and oxidative stress) to make a context-aware de-

cision when to proliferate and when to arrest.

Cells that remain arrested for an extended duration may tran-

sition into an irreversibly arrested senescent state (Figure 6).

Compared with the rest of the arrest trajectory, we observed

the highest expression of many proliferative effectors in senes-

cent cells (e.g., CDK4, CDK6, and cyclin D1) (Figure 5B). These

observations are consistent with a geroconversion model of

senescence (Blagosklonny, 2014) in which growth factor

signaling (through MAPK and mTOR pathways) continues in

the presence of a strong cell cycle blockade (e.g., p21 induction).

In these cells, persistent mitogenic/growth signaling drives an in-

crease in proliferative effectors and hypertrophy (Figure 5C) in a

futile attempt to overcome the cell cycle blockade. While the

mechanism(s) that govern the switch between reversible and

irreversible arrest remain elusive, we identified and validated a

multivariate molecular signature that distinguishes senescent

from quiescent cells. One interesting characteristic of cell cycle

arrest in RPE cells is the decrease in total RB expression as cells

progress along the arrest arm (Figure 4G). RB is the typically the

point of convergence for cyclins, CDKs and their inhibitors in

regulating the proliferation/quiescence decision. This loss of

RBduring cell cycle arrest suggests that an alternative regulatory

mechanism may guard against cell cycle re-entry from these

deeper states of arrest and provides a rationale for the persis-

tence of cell cycle arrest despite high expression of cyclins

and CDKs in senescent cells.

More generally, our systems-level approach enables future

studies directed at comparing cell cycle progression across
cell types, in different genetic backgrounds and in distinct envi-

ronmental contexts. This approach may prove particularly

powerful in the context of cancer cell biology, where dysregula-

tion of cell cycle components is well appreciated, but attempts to

target specific components individually have largely failed (Klein

et al., 2018; Schoninger and Blain, 2020). Identifying the differ-

ences between normal and oncogenic cell cycle structures

may provide novel insights into the mechanisms of tumorigen-

esis and lead to the development of new therapeutic targets.
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gift from Dr. Jorg Mansfield (Institute for Cancer Research, London, England) and Dr. Sabrina Spencer (University of Colorado

Boulder). All cell lines were authenticated by STR profiling (ATCC) and confirmed to be mycoplasma-free.

METHOD DETAILS

Antibodies
High quality, previously published/validated primary antibodies were identified using BenchSci (http://app.benchsci.com) and are

listed in Table S1.

Time-lapse imaging
Cellswere plated in glass-bottomplates (Cellvis) coatedwith fibronectin (1 mg/cm2, Sigma, F1141). Fluorescence imageswere acquired

using aNikon Ti Eclipse invertedmicroscopewith aNikonPlanApochromat Lambda40x objectivewith a numerical aperture of 0.95 and

an Andor Zyla 4.2 sCMOS detector. Autofocus was provided by the Nikon Perfect Focus System (PFS) and a custom enclosure (Oko-

labs) was used tomaintain constant temperature (37�C) and atmosphere (5%CO2). The following filter setswere used (excitation; beam

splitter; emission filter; Chroma): CFP (425-445/455/465-495nm), YFP (490-510/515/520-550nm), mCherry (540-580/585/593-668) and

Cy5(590-650/660/663-738nm). Stitched4-by-4 imageswere acquired every 10min for RPE-p21-mTq2/cycD1-mVenus/DHB-mCherry/

H2B-mIFP cells and every 16 min for RPE-PCNA-mTq2 cells. Uneven field illumination was corrected prior to stitching. NIS-Elements

AR software was used for image acquisition and post-processing. Nuclear regions were segmented based on the H2B-mIFP or PCNA-

mTq2 signal using a modified U-Net neural network (https://github.com/fastai/fastai), trained on manually annotated subsets of data.

Linking of regions into tracks was computed using TrackMate (Tinevez et al., 2017). Segmentation and tracking corrections were per-

formed manually. CDK2 activation was quantified as the ratio of background corrected cytoplasmic-to-nuclear intensity of the DHB-

mCherry sensor (cytoplasm signal quantified as a 40th percentile in a 15-pixel ring outside the nuclear segmentation, with a 2-pixel

gap between the nucleus and the ring; nuclear signal quantified as median) and p21/cyclin D1 expression was calculated as the back-

ground correctedmedian nuclear intensity. Cell cycle phaseswere annotatedmanually from time-lapse imaging using the appearance/

disappearance of nuclear PCNA foci tomark the beginning and end of S phase, respectively, and CDK2 reactivation (cell cycle re-entry)

was annotatedmanually as the point atwhich the cytoplasmic/nuclear ratio of DHB-mCherry begins to stably increase after cell division.

For the time-lapse imaging that preceded 4i (see Figure 1A), approximately 25% of the total well area was imaged for a total of 24h,

permitting �27% of the total cells to be tracked.

Iterative indirect immunofluorescence imaging
Cells were plated in glass-bottom plates (Cellvis) coated with fibronectin (1 mg/cm2, Sigma, F1141), treated as required and prepared

as follows. In between each step, samples were rinsed 3X times with phosphate-buffered saline (PBS) and incubations were at room

temperature, unless otherwise stated. Cells were fixed with 4% paraformaldehyde (ThermoFisher Scientific, 28908) for 30 min, per-

meabilized with 0.1% Triton X-100 in PBS for 15 min and inspected for sample quality control following Hoechst staining in imaging

buffer (IB: 700mMN-acetyl-cysteine (Sigma, A7250) in ddH2O. Adjust to pH 7.4). Cells were rinsed 3Xwith ddH2O and incubatedwith

elution buffer (EB: 0.5M L-Glycine (Sigma, 50046), 3M Urea (Sigma, U4883), 3MGuanidine chloride (ThermoFisher Scientific, 15502-

016), and 70mM TCEP-HCl (Sigma, 646547) in ddH20. Adjusted to pH 2.5) 3X for 10 min on shaker to remove Hoechst stain. Sample

was incubated with 4i blocking solution (sBS: 100 mM maleimide (Sigma, 129585), 100 mM NH4Cl (Sigma, A9434) and 1% bovine

serum albumin in PBS) for 1h and incubated with primary antibodies diluted as required (Table S1) in conventional blocking solution

(cBS: 1% bovine serum albumin in PBS) overnight at 4�C. Samples were rinsed 3X with PBS and then incubated in secondary an-

tibodies (Table S1) and Hoechst for 1h on shaker, then rinsed 5Xwith PBS and imaged in IB. Samples were imaged using the Nikon Ti

Eclipse microscope described above. Stitched 8x8 images were acquired for each condition using the following filter cubes

(Chroma): DAPI(383-408/425/435-485nm), GFP(450-490/495/500-550nm), Cy3(530-560/570/573-648nm), Cy5(590-650/660/663-

738nm). After imaging, samples were rinsed 3X with ddH2O, antibodies were eluted and re-stained iteratively as described above.

For immunofluorescence experiments that were combined with measurements of b-galactosidase activity, the CellEvent Senes-

cence Green Detection Kit (ThermoFisher, C10850) was used according to the manufacturer’s instructions. After imaging b-galac-

tosidase activity activity, cells were permeabilized, blocked and stained using the 4i protocol described above.

Image processing and single cell analysis
Image registration was performed in Python (v3.7.1) using features common to multiple rounds (Hoechst or CDK2 staining) and

the StackReg library (Thévenaz et al., 1998). Alignment quality was assessed manually and corrected using manually-selected fidu-

ciary points if necessary. Segmentation and feature extraction from registered images were performed using standard modules in

CellProfiler (v3.1.8) (McQuin et al., 2018). Only cells that persisted through all rounds of 4i were included in subsequent analyses.

Random forest models
Two random forest (RF) models were trained to predict cell cycle age and phase using the 4i signatures of individual cells. We used

80% of our annotated data to train the RFs and the remaining 20% was reserved as a test set. Classification accuracy was used as

the error metric to train the phase model, while root mean squared error (RMSE) was used to train the age model. The phase model

yielded 95.5% accuracy (95% CI: 93.5, 0.971) and a kappa of 0.925. The age model had an RMSE of 125.8 min with an R2=0.862.
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A third RFmodel was trained to predict arrest duration based on the 4i signatures of arrested cells (phospho/total RB < 1.7)(RMSE of

77.4 min and an R2=0.961). A fourth RF model was used to distinguish senescent cells (identified by graph-based clustering) from

quiescent cells based on their 4i signatures with an accuracy of 97.5%. Variable importance tables were obtained from each model

(Figures S1A, 4J, and 5B; Table S2) through calculation of unconditional permutation importance (age and phase models) or Gini

impurity (arrest duration and senescence models). All hyperparameter tuning was performed with 10-fold cross validation optimizing

model accuracy starting from default parameter values (Age: ntrees=500, mtry=246, Phase: ntrees=500, mtry=124).

We used RF models trained to predict cell cycle phase and age for feature selection to identify the minimal feature subset neces-

sary to accurately predict cell cycle state (i.e. both phase and age) while eliminating features that vary among cells in a cell cycle-

independent manner. First a combined ranking was calculated for each feature as the average of the individual rankings from the

variable importance tables obtained from the age and phase models. Successive random forest models were generated for both

age and phase starting with a single feature and adding additional features in order of combined ranking. Accuracy (for cell cycle

phase) or error (RMSE for cell cycle age) were calculated at each iteration (Figures S1B and S1C). The optimal feature was defined

as the top 40 features (by combined ranking).

RF models were made using R (v1.2.5001) with caret (v6.0-86) and ggplot2 (v3.3.2) packages or using Python (v3.7.1) with scikit-

learn (v0.24).

Convolutional neural network
The convolutional neural network (CNN) models predicting cell cycle phase and age were trained using as an input image stacks for

individual cells extracted from 4i experiments (48 fluorescent channels and 4 channels of masks representing entire cell, cell nucleus,

cytoplasm and cytoplasmic ring around the nucleus respectively; 52 frames total; 100 px x 100 px) and ground truth annotations ob-

tained from the time-lapse imaging. The Fastai (https://github.com/fastai/fastai) Python deep learning library was used for training

and the initial pre-trained ResNet-50 convolutional networkswere obtained directly from it. Both of themodels were trained first using

a low-resolution stack (50 px x 50 px) and then fine-tuned using full resolution stacks. The model predicting cell cycle phase was

based on 2930 cells divided into a training set (2491 cells; 85%) and a validation set (439 cells, 15%). ResNet-50 CNN predicting

phase was trained using a cross-entropy loss function. The model predicting cell cycle age was based on 2767 cells divided into

a training set (2352 cells; 85%) and a validation set (415 cells, 15%). ResNet-50 CNN predicting age was trained using mean squared

error loss function. Models were trained using Google Cloud VM (8 vCPUs, 52 GB memory, 1 x NVIDIA Tesla P100).

Manifold learning
Manifold learning was performed using Potential of Heat-diffusion for Affinity-based Transition Embedding (PHATE) (Moon et al.,

2019) using the optimal feature set described above as input variables. PHATE was run on z-normalized variables with the following

parameter sets: k-nearest neighbor (knn)=200, t=12, gamma=1.

Graph-based clustering
To identify groups of cells with similar feature profiles, a k-nearest neighbor graph (10 neighbors) was constructed from the z-normal-

ized optimal feature set using Euclidean distance and UMAP neighbor search. Cells were partitioned into groups using the Leiden

community detection algorithm (Traag et al., 2019) with a resolution parameter of 0.3 (leidenalg v0.8.3).

Trajectory inference
To infer the progression of cells through the cell cycle, diffusion pseudotime (Haghverdi et al., 2016) was performed using the DPT

function in scanpy. A k-nearest neighbor graph (30 neighbors) was constructed from the optimal feature set (see above). Diffusion

pseudotime was computed with a root cell randomly chosen from the youngest annotated cells and 10 diffusion map components.

Pearson and Spearman rank correlation were computed as similarity metrics to compare pseudotime to annotated and predicted cell

cycle age.

Given that DPT requires one root cell as input, we sought to evaluate its robustness to root cell choice when comparing molecular

age (pseudotime) to cell cycle age. Diffusion pseudotime was computed for all potential root cells that have an annotated age of 0.

The median Pearson correlation to cell cycle age for duration along the arrested trajectory was 0.8207 and proliferative trajectory

was 0.8870.

Data visualization
Data were visualized using Python (v3.7.1) and Jupyter Notebooks (v6.1.4) with matplotlib (v3.3.2), seaborn (v0.11.0) and scanpy

(v1.6)(Wolf et al., 2018) libraries, as well as GraphPad Prism (v8). Scanpy was also used to prepare data for visualization in virtual

reality using the singlecellVR website (singlecellvr.com) (Stein et al., 2020).
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