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ABSTRACT 
This study demonstrates application of convolutional neural 
networks (CNNs) for the analysis of a unique image analysis 
problem in fluorescence microscopy. We employed the U-Net 
CNN architecture and trained a model to segment nuclear regions 
in images of a translocating biosensor—which alternates between 
the nucleus and cytoplasm—without the need for a constant nuclear 
marker. The model provided high-quality segmentation results that 
allowed us to accurately quantify the extent of cyclin-dependent 
kinase activity in a population of cells. We envision that the 
development of this kind of analysis tools will enable biologists to 
design live-cell fluorescence imaging experiments without the need 
for providing a constant marker for a subcellular region of interest. 
As a consequence, they will be free to increase the number of 
biosensors measured in single cells or reduce the phototoxicity of 
cellular imaging.  
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1. INTRODUCTION 
With recent advancements in the automation of microscopy 
experiments, huge quantities of imaging data can be gathered faster 
than ever before [2]. However, a severe bottleneck has emerged in 
the difficulty of processing this increasing amount of data. The 
problem is due to a lack of automated image analysis algorithms 
providing high quality results in tasks such as image classification, 
segmentation or object tracking. Recently, deep learning-based 
image analysis algorithms have emerged as promising new tools to 
facilitate both automation and extraction of information that is not 
available to other methods. The strength of this approach lies in the 
automated extraction of optimal features for each specific image 
analysis problem, therefore promising a fully customized solution 
without a need for feature design by experts [8].   
Functional imaging of single cells is one of the fast developing 
bioimaging fields. With the development of new genetically-
encoded fluorescent biosensors, one can investigate an increasing 
number of cellular processes simultaneously in the same cell. One 
class of functional biosensors contain reporters that provide 
information on the activity of proteins of interest by localizing to 
different subcellular compartments. This group is referred to as 
translocation biosensors [4]. Translocation biosensors often report 
on the activity of cellular kinases, enzymes responsible for the 
phosphorylation of other proteins. They play a crucial role in the 
regulation of cellular signal processing [5]. When a cell is 
perturbed, functional information such as stimulus intensity and 
frequency can be encoded in a temporal kinase activation pattern, 
making kinases a crucial point of research in modern biology [6].  
Progression through the cell cycle—one of the most fundamental 
processes in cell biology—is driven by cyclin-dependent kinases 
(CDKs). For example, increased activity of Cyclin Dependent 
Kinase 2 (CDK2) correlates with a cell approaching a new round 
of DNA replication. Conversely, low CDK2 activity indicates that 
a cell will withdraw, at least temporarily, from cycles of replication 
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Figure 1: Cells expressing a translocating fluorescent biosensor of CDK2 activity (red) annotated with the outlines of their nuclear 
regions (blue). 



and division and instead transition to a quiescent state [9]. The 
CDK2 translocation biosensor is based on a fragment of one of the 
cellular targets of CDK2, DNA Helicase B, fused to a fluorescent 
protein tag. When CDK2 is not active, the sensor remains 
unphosphorylated and localizes to the nucleus. However, when 
CDK2 becomes active, the sensor translocates to the cytoplasm [9]. 
Therefore, the cytoplasmic-to-nuclear ratio (Cyt/Nucl) of the 
sensor fluorescence signal correlates with the activity level of 
CDK2. 
In order to accurately quantify Cyt/Nucl ratio of CDK2 sensor, the 
nuclear region of each cell must be properly segmented. For the 
boundary of the nucleus to be delineated correctly, a constant 
presence of an additional nuclear marker is normally required.  
However, the presence of an additional nuclear marker in many 
experiments, especially involving live-cell imaging, can be 
problematic. The additional marker may increase phototoxicity in 
an experiment or simply prevent measurements of additional 
cellular signals by blocking one of the fluorescence channels, 
which are typically limited to no more than four or five. 
However, visual inspection reveals that the CDK2 signal alone 
should provide enough information to segment nuclei without the 
use of an additional marker. In cells with low CDK2 activity, the 
sensor directly marks nuclei. However, as the activity of CDK2 
increases, the sensor localizes to the cytoplasm and provides 
enough contrast to delineate nuclei as elliptical regions devoid of 
fluorescent signal. We set to employ a deep learning image analysis 
approach to train a model to segment nuclear regions based solely 
on the localization signal of the translocating CDK2 biosensor. 
Convolutional Neural Networks (CNNs) have proven to be 
especially apt at image classification and segmentation tasks. 
Convolution filters are ideal for recognizing localized spatial 
features and have the added benefit of limiting the number of 
trainable parameters, reducing computational times to allow for 
longer training. The U-Net architecture, developed in 2015 for 
biomedical image segmentation, has been particularly successful in 
the wide range of image segmentation tasks due to its uniquely 
symmetric encoding and decoding channels [7].  
The goal of this work is to apply U-Net architecture and train a 
model to segment cellular nuclei in images of CDK2 translocating 
biosensor without the use a separate nuclear marker. 

2. DATA AND METHODS 
2.1 Microscopy 
RPE-hTert cells expressing CDK2 sensor [9] were cultured on 
glass-bottom plates (Cellvis, #1.5), fixed with 4% 
paraformaldehyde for 15 minutes at room temperature and stained 
with DAPI. Imaging was performed using a Nikon Ti Eclipse 
inverted microscope using Plan Apochromat dry objective 20x (NA 
0.75). Images were recorded using an Andor Zyla 4.2 sCMOS 
detector with 12-bit resolution and converted to 8-bit before the 
analysis. All filter sets were from Chroma: DAPI - 395/25 nm; 425 
nm; 460/50 nm (excitation; beam splitter; emission filter), mCherry 
- 560/40 nm; 585 nm; 630/75 nm. 

2.2 Dataset 
There were 272 CDK2 sensor and DAPI image pairs collected. To 
create ground truth segmentation masks, the DAPI images were 
segmented and processed through morphological operations 
(opening and watersheding) using the SciKit-Image (Skimage) 
image processing package, version 0.13.1 in Python 3.6. The masks 
were inspected and corrected manually to avoid erroneously 
merged objects. To facilitate training, the images were divided into 

four tiles (1024x1024 px each). The images were divided equally 
into training and test sets. The training set was then supplemented 
through data augmentation with 320 additional images. 

 
Figure 2: Loss function changes during training. 

2.3 Model and training 
The convolution neural network architecture U-Net was 
implemented using the PyTorch machine learning library in Python 
3.6. The implementation was adapted from the code from GitHub 
users jvanvugt [3] and bvezilic [1]. Edge padding was used to 
eliminate border loss and maintain outputs that match the 
dimensions of input images. All training and testing was done on a 
Google Cloud VM instance using an NVIDIA Tesla P100 16GB. A 
training batch size of two was used and trained over 20 epochs with 
a learning rate of 0.001 using Adam Optimizer. The binary cross 
entropy loss function was used to score the model output during 
training. The changes in the loss function during training using the 
original and the augmented dataset are shown in Figure 2.  

2.4 Evaluation and segmentation 
The Jaccard index was calculated for each pair of objects in the 
ground truth and test images. Jaccard index values were compared 
with increasing thresholds (in the range from 0.5 to 0.95 with 0.05 
increment) to label the objects as true positive (TP), false positive 
(FP) or false negative (FN). Recall (TP/(TP+FN)) and precision 
(TP/(TP+FP)) parameters were calculated for each Jaccard index 
threshold value. In the analysis of recall and precision, the objects 
were stratified based on CDK2 sensor ratio values defined for true 
positive objects (in ground truth mask for recall analysis and in 
model output mask for precision analysis). 
Ratios of cytoplasmic to nuclear CDK2 sensor signal were 
calculated for both the ground truth and model output masks. The 
cytoplasmic CDK2 sensor level is measured within a 5 pixel-wide 
ring-shaped region around the nucleus. The distributions of CDK2 
sensor ratio values calculated for ground truth and model output 
masks are plotted in the form of histograms and compared using the 
2-sample, 2-sided Kolmogorov-Smirnov test. Scatterplots of CDK2 
sensor ratio vs. total DAPI signal within nuclear regions were 
plotted to compare results obtained using ground truth and model 
output segmentation masks. 
 



3. RESULTS 

Example segmentation results are presented in Figure 3. Visual 
inspection of the results suggests that the majority of cell nuclei 
were detected and segmented correctly. However, one can also spot 
some typical errors of segmentation – missing or misshaped objects 
and spurious detections. 

 
Figure 4: Precision and recall rates calculated based on 
increasing Jaccard Index threshold values for cells with low, 
medium, and high CDK2 activity levels. 
To quantitatively evaluate the performance of the segmentation, we 
calculated recall and precision rates of object detection. Positive 
detection was defined as a pair of objects, whose Jaccard index 
exceeds a defined threshold value. However, as a single precision 
and recall score at the specified threshold do not adequately 
describe the behavior of the model, we repeated the calculation for 
a range of Jaccard index values. Additionally, we stratified this 
analysis for groups of cells with different CDK2 sensor cytoplasm 
over nucleus ratio levels. In the analysis of recall, we used CDK2 
ratio values calculated based on ground truth masks. However, in 
the analysis of precision we had to stratify cells based on CDK2 
ratio values calculated based on predicted regions. The results of 
this analysis are shown in Figure 4. As expected, both recall and 
precision of detection decrease when a higher value of overlap 
between the pair of objects is required. Interestingly, both groups 
of cells with high and low CDK2 ratio levels were detected 
significantly better than cells with a medium level of CDK2 
activity. This result suggests, not surprisingly, that the contrast 

between the nucleus and the cytoplasm is crucial in proper 
segmentation of nuclear regions. It is also interesting to note that 
the cells with high cytoplasm presence of CDK2 sensor were the 
best performing group over the whole tested range of Jaccard index 
values.  

 
Figure 5: a. Comparison of CDK2 ratio distributions based on 
ground truth and model output masks.  b, c. Total DAPI signal 
vs. CDK2 ratio for ground truth (b) and predicted nuclear 
regions (c). Vertical lines indicate arbitrary threshold (at the 
level of 0.8) between cells positioned early or late in the cell 
cycle. 
Importantly, the segmentation of CDK2 biosensor images allows 
us to get a quantitative information of the proliferation status of cell 
colonies. We compared CDK2 activity values calculated based on 
correct ground truth nuclear region and based on regions detected 

Figure 3:Two examples of fluorescent images (DAPI and CDK sensor) together with the comparison of ground truth segmentation 
masks and model output for the same fields of view. Scale bar = 50 µm. 



by our trained algorithm. The results of this comparison are 
presented in Figure 5. We do not detect any significant differences 
in the distribution of CDK2 activity values between the two 
calculation methods (Kolmogorov-Smirnov test, p=0.46). The 
percentage of cells with low CDK2 activity value (below threshold 
level of 0.8) based on ground truth segmentation is 49%. In 
comparison, the trained algorithm-based segmentation predicted 
48% of cells to show CDK2 activity below this threshold level 
(Figure 5 b and c). This comparison suggests that the quality of 
segmentation performed by our trained model is sufficient to 
extract biologically relevant information about the proliferation 
status of cell colonies. 

4.   DISCUSSION 
In this study we have shown that a U-Net type neural network can 
be trained to successfully segment nuclear regions based on images 
of a translocating biosensor. Most notably, the achieved quality of 
segmentation enables us to calculate the correct distribution of 
CDK2 activity among cells in a heterogeneous population. This 
success may be attributed to the fact that the majority of 
segmentation errors occurs in the population of cells with the 
intermediate CDK2 activity levels. In these cells, the biosensor is 
equally distributed between the nucleus and the cytoplasm, 
providing little contrast for the proper segmentation. Yet 
consequently, the lack of contrast in this population also results in 
a limited measurement error of the CDK2 activity, even in case of 
significant segmentation errors. 
There are several possible improvements that may further enhance 
the segmentation of this class of images. Firstly, by looking at the 
obtained segmentation results, we observed that one of the most 
common segmentation errors is detection of two adjacent nuclei as 
a single object, also known as merging. These errors persisted even 
after applying an additional watershed segmentation step on the 
network output. In order to encourage a network to find the missing 
thin boundaries, the training could be performed using masks with 
differentially weighted pixels. In such prepared masks, boundaries 
of close objects should be assigned higher weights than the interior 
pixels of objects, as implemented in the original U-Net report [7]. 
Moreover, weighted masks could also be utilized to specifically 
improve the segmentation of the nuclei of cells with intermediate 
CDK2 activity and little contrast. Assigning larger weights to pixels 
belonging to regions with little contrast would effectively force the 
network to learn how to better segment those regions. 
During the analysis of the network results we also noticed that our 
ground truth segmentation masks contain unexpected errors. 
Occasionally, cells that were clearly visible in the CDK2 sensor 
image were entirely missing nuclear signal in the DAPI image. 
Since the ground truth segmentation was created based on the DAPI 
images, this led to the overestimation of the number of false 
positive detections. The lack of consistent DAPI staining may have 
originated from an unusual error in sample preparation. In the 
future, a more thorough vetting of the ground truth segmentation 
images is necessary to avoid this kind of errors compromising the 
training and confounding the interpretation of the results. Another 
direction for future improvement of the segmentation results is fine 
tuning and estimation of hyperparameters in neural network 
training, for example annealing of the learning rate during training 
or testing different loss functions. Finally, we were successful in 
improving the performance of the network by using data 
augmentation and adding transformed images to our training set. 
This approach could be exploited further and multiple 
transformations could be added to the training set. 

In future work, we plan to test and fine tune our model in 
segmentation of live cell time lapse imaging data which require 
fully automated high throughput analysis methods. We will also 
address the question of robustness by testing how transferable the 
trained model is between images collected with slightly different 
experimental settings and between images of different kinds of 
cells expressing the same translocating biosensor. 

5.   CONCLUSIONS 
In this paper, we present a successful application of deep learning 
for segmentation of images of cells expressing the CDK2 activity 
biosensor, which translocates between the nucleus and cytoplasm. 
Using the U-Net CNN architecture, we showed that cellular nuclei 
can be segmented from CDK2 biosensor images alone without use 
of any additional biological reporters. This research serves as a 
proof of concept for the application of deep learning methods in the 
analysis of microscopy images of cells missing fluorescent marker 
directly localizing to the organelles of interest. 
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