

Objectively-characterized peritraumatic sleep phenotypes are associated with both pre-trauma characteristics and peritraumatic symptom outcomes

Oliver M. Holmes^{1,2}, Meredith A. Bucher^{1,2}, Thomas C. Neylan⁴, Gari D. Clifford⁵, Qiao Li⁵, Qinghua Li², Robert F. Dougherty⁶, Justin Baker^{7,8}, Sarah D. Linnstaedt^{1,3}, Tanja Jovanovic⁹, Jennifer S. Stevens⁵, Stacey L. House¹⁰, Kerry J. Ressler^{7,8}, Ronald C. Kessler⁸, Samuel A. McLean^{1,2}, Xinming An^{1,3} From: ¹The Institute for Trauma Recovery, ²Department of Psychiatry, UNC-Chapel Hill, ³Department of Anesthesiology, UNC-Chapel Hill, ⁴University of California San Francisco, ⁵Emory University School of Medicine, ⁶Mindstrong Health, ⁷McLean Hospital, ⁸Harvard Medical School, ⁹Wayne State University, ¹⁰Washington University School of Medicine

Introduction

- Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among military and civilian trauma survivors and often manifest as posttraumatic stress or post-concussion syndrome.
- Peritraumatic sleep responses to traumatic stress exposure such as changes in total sleep time (TST) and/or sleep efficiency (SE) are hypothesized to be associated with APNS.
- This project utilized multifaceted peritraumatic data from the AURORA study, including patient characteristic and wearable phenotyping data collected in the peritraumatic period, to examine how individual and peritraumatic sleep characteristics may interact to affect the development of APNS.

Methods

- Trauma survivors presenting to the emergency department (ED) after traumatic stress exposure were equipped with a Verily Study Watch for monitoring during the week after ED discharge.
- · Watch accelerometer data were used to assess daily TST and SE.
- Trauma survivor characteristics were collected in the ED and serially thereafter using the smartphone-based Discovery by Mindstrong™ App.
- After data cleaning, linear mixed modeling was used to explore the associations between repeated measures of TST and SE over the first 7 days of sleep, demographic predictors, and self-reported peritraumatic sleep and symptom characteristics.

Table 1: Post-Cleaning Dataset and Patient Characteristics (n=2,305)

Hours of total sleep data (days)	271,469 (11,311)			
Age in years (mean, SD)	35.5 (13.4)			
Female (n, %)	1395 (60.5%)			
Race (n, %)				
Hispanic	296 (12.8%)			
Non-Hispanic Black	1123 (48.7%)			
Non-Hispanic White	101 (4.4%)			
Non-Hispanic Other	779 (33.8%)			
Income (n, %)				
<=\$19,000	608 (26.4%)			
\$19,001 to \$35,000	549 (23.8%)			
\$35,001 to \$50,000	231 (10.0%)			
\$50,001 to \$75,000	148 (6.4%)			
\$75,001 to \$100,000	123 (5.3%)			
>\$100,000	130 (5.6%)			
Education Status (n, %)				
College Graduate and above	453 (19.7%)			
Some college/associate degree	935 (40.6%)			
High School Graduate or equivalent	635 (27.5%)			
Less than high school	282 (12.2%)			

Table 2: Associations between survivor pre-trauma characteristics and total
sleep time during the week after trauma (displayed as p values)

Predictor	P-value
Sex, Race, Education, Income, Marital Status, SF-12 Physical	< 0.0001
Health, Network Positive Interactions, Frequency of affiliated	
interactions with friends/relatives, Sleep Duration Score, Count of	
body regions with moderate/severe pain, Pre-trauma Pain Score,	
Lifetime Alcohol Use, BMI, Ethnicity	
Age, Pain catastrophizing, Vehicle Speed Limit, Dissociative	0.0001 - <0.001
Symptoms, Trauma – Perceived Chance of Dying, Dissociative	
Symptom (DESB RS), Moderate/Extreme Childhood Physical	
Neglect, Tobacco Use Frequency	
NIAAA Alcohol Use Group, Childhood Physical Abuse, Lifetime	0.001 - <.01
PCL-5 Score, Widespread Pain 2016 Definition, Religiosity total	
score, Big Five Inventory (BFI) – Neuroticism, Panic during Sleep	
Childhood Emotional Neglect, Childhood Trauma Total Score, Sum	0.01 - <.05
of Somatic Symptoms, SF-12 Mental Health, Any Childhood	
Trauma, Insomnia Score, Moderate/Extreme Childhood Sexual	
Abuse, Alcohol Use Quantity, BFI Category, Alcohol Use	
Frequency, Pre-trauma PCL-5 Score	

Table 3: Associations between survivor pre-trauma characteristics and sleep efficiency during the week after trauma (displayed as p values)

Predictor	P-value	
Sex, Education, Income, Tobacco Use Frequency, Marijuana Use	< 0.0001	
Frequency		
Age, Marital Status, General Health PCS, SF-12 Physical Health,	0.0001 - <0.001	
Sleep Duration Score		
Knocked Out During Trauma, Panic during Sleep, Employment	0.001 - <.01	
Status, Pre-trauma Pain Score, Race, BMI Category, Widespread		
Pain 2016 Definition, Insomnia Score, Count of body region with		
moderate/severe pain, Pain catastrophizing		
Lifetime Trauma Events Happened to You, Pain interference,	0.01 - <.05	
Employment Status, Big Five Inventory (BFI) – Neuroticism,		
Dissociative Symptom (DESB Score)		

Table 4: Associations between peri-traumatic symptoms and sleep characteristics during the week after trauma

Results

- The life-history characteristics most strongly associated with total sleep time in the first week after trauma (Table 2) were sex, race, income, pre-trauma pain severity, and lifetime alcohol use.
- The life-history characteristics most strongly associated with sleep efficiency in the first week after trauma (Table 3) were age, sex, education, tobacco use frequency, and general health.
- Peritraumatic self-report sleep measures such as insomnia and sleep-related impairment at week 2 were significantly associated with TST, while sleep duration at week 2 was significantly associated with both TST and SE (Table 4).
- Pain experienced in the ED post-trauma also predicted diminished peritraumatic TST and SE (Table 4).
- Finally, peritraumatic sleep efficiency also predicted patient's Physical Health at Week 2 (Table 4).

Conclusions

- Individual pre-trauma patient characteristics predict the amount and efficiency of sleep in the week after trauma. These characteristics also predict APNS.
- Poor peritraumatic sleep and symptoms have been shown to be an important risk factor for APNS.
- Interventions which target total sleep time and sleep efficiency as important factors in reducing APNS and improving post-traumatic outcomes should be assessed further.

Funding

- This project was funded by the National Institute of Mental Health (NIMH) under U01MH110925, the US Army MRMC, One Mind, and The Mayday Fund. Hardware and software utilized in the sleep assessments were provided by Verily Life Sciences and Mindstrong Health.
- This content is solely the responsibility of the authors and does not necessarily represent the official views of any of the funders.

🝿 minds	strong
National Institute of Mental Health	💶 verily
Ref	erences

References available upon request