

Cu(e) the balancing act: Copper homeostasis explored in 5 siblings with variable clinical course

Objective

Present a unique variation of phenotype and course in siblings with Menkes Disease (MD)

Methods

- Review literature describing copper transport disorders
- Apply findings to our case of five affected siblings

- Mut (M
- ✤ Mut (W
- The cop sev
- Phe resi cup

	Background					Sibling: birth order	Presentation	Exam	Diagnostic testing	Treatment Copper Histid	
*	Mutations in ATF (Menkes disease) Mutations in ATF	ease) ATP7A: copper deficiency ase) ATP7B: copper overload			Dietary copper (Cu)	Brain (Low Cu)	1	O/AD: Infancy/12mos FTT, Seizures, DD	N/A	N/A	No
*	(Wilson disease) The amount of re copper transport	esidual t influe	func nces	tioning disease	Small intesting	Skin & Hair (Low Cu)	2	O/AD: Infancy/NA FTT	N/A	N/A	No
*	severity as well a Phenotypes are i resulting deficien cuproenzymes	is treat nfluend nt activ	ment ced b fity of	t response y the f	(High Cu) Kidney (High Cu)	Bones (Low Cu)	3	O/AD: 6yo/Birth FTT, DD, Ataxia and motor regression, Urogenital complications, Syncopal events, Food aversion 2/2 choking fear, Pyloric stenosis	 Macrocephaly Frontal bossing Mild dysmorphic features Pectus Pectus carinatum Ataxia (Speech, gait, hands) Low muscle tone Normal reflexes 	Ceruloplasmin 7.1mg/dL (L) Copper 0.20mcg/mL (L) Vit C <0.1mg/dL (L) <u>CT head (</u> 2015): Unusually prominent CSF space ventral to brainstem and cerebellar hemispheres	Yes - infancy to 3 - 1 repeat course (no responsive
*	Early Cu(His) supplementation appears to lower	Condition Menkes disease	Age of onset (years) 0–1	Neurological and othe signs Hypotonia; seizures; de delay; coarse hair; jowl	r clinical Biochemical findings evelopmental Low serum copper y facies; lax and ceruloplasmin;	Molecular defects Diverse mutations in <i>ATP7A</i> ; 0–15% residual					
	neuro- degeneration in some patients			skin and joints; decrease density; bladder divertic polyps; vascular tortuou distension	1 boneabnormal plasma andA1la; gastricCSF neurochemicalsity andlevels; increasedurine β2-microglobulin	ATP7A function		O/AD: 4yo/not tested FTT, Ataxia and motor regression,	- Dysmorphic features: angular face, wide set eyes	<u>MRI brain (</u> 2017): Non- enhancing lesion within the left neck, possibly a	Yes: infancy
 Treeff ho de am fun tra 	Treatment efficacy varies however, and depends on	Occipital 3–10 horn syndrome	Dysautonomia; [*] slight muscle strength; coarse occipital exostoses; har clavicular heads; lax sk bladder diverticula; vas tortuousity and distensi	a reduction inLow to normal serumLeaky splice junction ore hair;copper andhypofunctional ATP7Ammer-shapedceruloplasmin;missense mutations; 20–kin and joints;abnormal plasma and30% residual ATP7AscularCSF neurochemicalfunctionionlevelsLeaky splice junction or		4	Urogenital complications, Syncopal events, Chronic b/l radial dislocations, Behavioral concerns	- Muscle wasting - Ataxia (Speech, gait, hands) - Low muscle tone - Normal reflexes	lymphatic malformation <u>CT head (</u> 2017): Torturous intracranial vessels Normal EKG, ECHO, EEG	3yo, 1 repea course (responsive	
	functioning Cu transporters ¹	ATP7A- related distal motor neuropathy	5–50	Atrophy and weakness muscles; foot drop; dec absent deep tendon refl abnormal nerve conduc studies; [‡] pes cavus foo no other specific clinica abnormalities	of distal No specific reased or abnormalities exes; tion t deformity; al	Missense mutations causing substitutions in or near transmembrane segments in carboxyl half of ATP7A; 60–70% residual ATP7A function	5	O/AD: Infancy/Birth FTT, Seizures (Infantile spasms), Developmental regression	- Occipital flattening - Hypotonia - No contractures - Malnourished	<u>MRI brain:</u> Foci of T2 hyperintensity in b/l frontal, parietal, temporal lobes <u>EEG</u> : infantile spasms <u>Microarrary</u> : Hemizygous deletion of the entire exon 1 within ATP7A gene	Yes: Neonat period onwa - NIH Menko study

^{*}Syncope, dizziness, orthostatic hypotension, abnormal sinoatrial conduction, nocturnal bradycardia, and bowel or bladder dysfunction. [‡]Decreased peroneal and median muscle amplitudes with normal conduction velocities.

Sonia A Varghese MD MPH MBA and Yael Shiloh-Malawsky MD

Case Presentation

- The graph below depicts the phenotypic spectrum seen in the 5 brothers
- Mom is a known carrier of ATP7A mutation
- There is limited information on the siblings who were not seen at UNC
- The 6th sibling is the youngest and is a healthy female infant (not included here)

O = Symptom Onset, AD = Age of Diagnosis, FTT: Failure DD = Developmental delay, D =Deceased, L =living Urogenital complications: Bladder diverticula, recurren

Discussion

ine	Outcomes						
	D: 16mos Brain hemorrhage						
	D: 13mos FTT, Meningitis						
3y c ot	L: motor regression - Unable to ambulate unassisted						
y- at e)	L: motor regression - Unable to ambulate unassisted						
tal ard œs	D: 19 mos Severe malnutrition						
e to thrive							
t UTIs. VUR							

- ATP7A mutations produce a clinical spectrum Siblings 1, 2, and 5 follow a more classic Menke's course, while siblings 3 and 4 exhibit a phenotypic variation
- This variation is suggestive of a milder form of Menkes such as occipital horn syndrome with residual copper transport function
- Siblings 3 and 4 had improvement with copper supplementation, however declined when off supplementation -suggesting residual ATP7A copper transport function
- In comparison, sibling 5 received Cu(His) twice daily since birth and had limited benefit -suggesting that he had minimal to no functioning transporters

Conclusions

- Recognizing the unique clinical course in our patients is important in guiding management and providing appropriate genetic counseling.
- Importance of cuproenzymes should not be overlooked when treating Menkes
- Future research is indicated to clarify the affected common pathways and resulting phenotypic similarities.
- Sufficient copper delivery to the brain is essential for proper neurodevelopment. Therefore, early copper supplementation should be considered if concerned for Menkes

References

1. Stephen G. Kaler. Nat Rev Neurol. 2011 January ; 7(1): 15–29. ATP7A-related copper transport diseases—emerging concepts and future trends 2. Kaler SG. Metabolic and Molecular Bases of Menkes Disease and Occipital Horn Syndrome. Pediatric and Developmental Pathology. 1998;1(1):85-98. 3. Borm B, Møller LB, Hausser I, Emeis M, Baerlocher K, Horn N, Rossi R. Variable clinical expression of an identical mutation in the ATP7A gene for Menkes disease/occipital horn syndrome in three affected males in a single family. J Pediatr. 2004 Jul;145(1):119-21..