Skip to main content

The work in my lab is focused on the regulation of cell adhesion and the inter-relationship between alterations in adhesion and the biology of the cell. Our lab has made several key observations on the molecular mechanisms by which acantholysis proceeds in the human autoimmune blistering diseases pemphigus vulgaris and pemphigus foliaceus.  The presence or absence of adhesion represents a major biologic shift requiring coordination amongst various biological processes, including those regulating adhesion, migration, proliferation, differentiation, and cell death.  The intracellular regulatory and signalling events observed in pemphigus acantholysis likely represent variations of normal physiologic mechanisms regulating the presence/absence of desmosome-mediated cell-cell adhesion in epidermal epithelia.  We proposes that these events are important for regulating transitions in cell-adhesion and likely have a central role in adhesion transitions occuring during such processes as wound healing, tumor cell proliferation and invasion.  Current projects in the lab are focused on furthering work on the mechanism of pemphigus acantholysis as well as elucidating the role of desmosomes in wound healing and cancer biology.,The work in my lab is focused on the regulation of cell adhesion and the inter-relationship between alterations in adhesion and the biology of the cell. Our lab has made several key observations on the molecular mechanisms by which acantholysis proceeds in the human autoimmune blistering diseases pemphigus vulgaris and pemphigus foliaceus.  The presence or absence of adhesion represents a major biologic shift requiring coordination amongst various biological processes, including those regulating adhesion, migration, proliferation, differentiation, and cell death.  The intracellular regulatory and signalling events observed in pemphigus acantholysis likely represent variations of normal physiologic mechanisms regulating the presence/absence of desmosome-mediated cell-cell adhesion in epidermal epithelia.  We proposes that these events are important for regulating transitions in cell-adhesion and likely have a central role in adhesion transitions occuring during such processes as wound healing, tumor cell proliferation and invasion.  Current projects in the lab are focused on furthering work on the mechanism of pemphigus acantholysis as well as elucidating the role of desmosomes in wound healing and cancer biology.


UNC AFFILIATIONS:

Dermatology

CLINICAL/RESEARCH INTERESTS:

Biochemistry, Cell Biology, Cell Signaling, Drug Discovery, Translational Medicine

Leave a Reply

You must be logged in to post a comment.